タグ「分数」の検索結果

52ページ目:全4648問中511問~520問を表示)
獨協医科大学 私立 獨協医科大学 2016年 第1問
次の問いに答えなさい.

(1)$m$を実数の定数とする.$x$についての$2$つの$2$次不等式

$x^2-4x+3<0 \qquad\hspace{2.65mm} \cdots\cdots \ ①$
$x^2-2mx-8m^2<0 \cdots\cdots \ ②$

を考える.$①$の解は
\[ [ア]<x<[イ] \]
である.
$①$を満たすすべての実数が$②$を満たすような$m$の値の範囲は
\[ m \leqq \frac{[ウエ]}{[オ]}, \frac{[カ]}{[キ]} \leqq m \]
である.
また,$①,\ ②$をともに満たす実数$x$が存在しないような$m$の値の範囲は
\[ \frac{[クケ]}{[コ]} \leqq m \leqq \frac{[サ]}{[シ]} \]
である.
(2)$4$進法で表された$123_{(4)}$を$10$進法で表すと,$[スセ]$である.
整数$n$を$4$進法で表したとき,$3$桁になった.このとき,$n$のとり得る値の範囲を$10$進法で表すと
\[ [ソタ] \leqq n \leqq [チツ] \]
である.
$10$進法で表された$3^{20}$を$4$進法で表すと,その桁数は$[テト]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
獨協医科大学 私立 獨協医科大学 2016年 第2問
袋の中に,$1,\ 2,\ \cdots,\ m$($m$は$2$以上の整数)の数字が書かれた球がそれぞれ$n$個ずつ($n$は正の整数),合計$mn$個入っている.この袋の中から同時に$2$個の球を取り出す.取り出した球に書かれている数字が$k,\ l (k \geqq l)$のとき,$x=k$,$y=l$とする.

(1)$m=6,\ n=3$のとき,$x-y=3$となる確率は$\displaystyle \frac{[ア]}{[イウ]}$である.
(2)$2(x-y) \geqq m$となる確率を$p$とする.


$m=18$,$n=3$のとき,$\displaystyle p=\frac{[エオ]}{[カキ]}$である.

$m$が偶数,$n=3$のとき,$\displaystyle p=\frac{[ク]m+[ケ]}{[コサ]m-[シ]}$である.


(3)$2(x-y)<m$となる確率は,$m$が偶数のとき
\[ \frac{[ス]mn-[セ]n-[ソ]}{[タ](mn-[チ])} \]
である.
獨協医科大学 私立 獨協医科大学 2016年 第3問
三角形$\mathrm{ABC}$について,$\mathrm{AB}=5$,$\mathrm{BC}=7$,$\mathrm{CA}=8$とする.このとき
\[ \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[アイ] \]
である.$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.このとき
\[ \overrightarrow{\mathrm{AD}}=\frac{[ウ]}{[エオ]} \overrightarrow{\mathrm{AB}}+\frac{[カ]}{[キク]} \overrightarrow{\mathrm{AC}} \]
である.

また,三角形$\mathrm{ABC}$の内接円の中心を$\mathrm{I}$,外接円の中心を$\mathrm{O}$とすると


$\displaystyle \overrightarrow{\mathrm{AI}}=\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{AB}}+\frac{[サ]}{[シ]} \overrightarrow{\mathrm{AC}}$

$\displaystyle \overrightarrow{\mathrm{AO}}=\frac{[ス]}{[セソ]} \overrightarrow{\mathrm{AB}}+\frac{[タチ]}{[ツテ]} \overrightarrow{\mathrm{AC}}$


である.
したがって
\[ |\overrightarrow{\mathrm{OI|}}^2=\frac{[ト]}{[ナ]} \]
である.
三角形$\mathrm{ABC}$の外接円の周上を動く点$\mathrm{P}$と内接円の周上を動く点$\mathrm{Q}$があるとき,線分$\mathrm{PQ}$の長さの最大値は
\[ \frac{[ニヌ]+\sqrt{[ネ]}}{\sqrt{[ノ]}} \]
である.
獨協医科大学 私立 獨協医科大学 2016年 第4問
次の問いに答えなさい.ただし,$[チ]$には$[$\mathrm{X]$}$~$[$\mathrm{Z]$}$に入る言葉の組合せとして最も適切なものを,下の選択肢$\nagamaruichi$~$\nagamaruroku$のうちから一つ選びなさい.

複素数$\alpha$を$\alpha=-7+4 \sqrt{3}i$とし,実数の数列$\{a_n\}$と$\{b_n\}$を
\[ a_n+4 \sqrt{3} b_n i=\alpha^n \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.ただし,$i$は虚数単位である.$a_n$と$b_n$を$\alpha$とその共役な複素数$\overline{\alpha}$で表すと
\[ a_n=\frac{\alpha^n+(\overline{\alpha})^n}{[ア]},\quad b_n=\frac{\alpha^n-(\overline{\alpha})^n}{[イ] \sqrt{[ウ]}i} \]
となるので,数列$\{a_n\}$と$\{b_n\}$は漸化式

$a_{n+2}+[エオ]a_{n+1}+[カキ]a_n=0 \quad \cdots\cdots \ ①$
$b_{n+2}+[エオ]b_{n+1}+[カキ]b_n=0 \quad\;\;\!\! \cdots\cdots \ ②$

を満たす.これらを用いて,すべての自然数$n$に対して

$a_n$と$b_n$が互いに素な整数である $\quad \cdots\cdots \ (*)$

ことを,数学的帰納法により証明する.

(i) $n=1,\ 2$のとき
\[ a_1=[クケ],\quad b_1=[コ],\quad a_2=[サ],\quad b_2=[シスセ] \]
であるから,$(*)$が成り立つ.
(ii) $n=k,\ k+1$のとき$(*)$が成り立つと仮定する.
まず$①,\ ②$より,$a_{k+2},\ b_{k+2}$は$[$\mathrm{X]$}$である.ここで
\[ {a_n}^2+48{b_n}^2=[ソタ]^n \quad \cdots\cdots \ ③ \]
がすべての自然数$n$で成り立つ.$[ソタ]$が$[$\mathrm{Y]$}$であるから,$a_{k+2},\ b_{k+2}$が$[$\mathrm{Z]$}$と仮定すると$③$より,これら$2$数は$[ソタ]$の倍数でなければならない.ところが,このとき$①,\ ②$より$a_{k+1},\ b_{k+1}$は$[ソタ]$の倍数となり,数学的帰納法の仮定と矛盾する.よって,$n=k+2$のときも$(*)$が成り立つ.

$(ⅰ),\ (ⅱ)$より,すべての自然数$n$について$(*)$が成り立つ.

$[チ]$の選択肢
\[ \begin{array}{ccccccccc}
& \mathrm{X} & \mathrm{Y} & \mathrm{Z} & & & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\
\nagamaruichi & \text{整数} & \text{素数} & \text{互いに素でない} & & \nagamaruni & \text{整数} & \text{素数} & \text{互いに素である} \\
\nagamarusan & \text{素数} & \text{素数} & \text{互いに素でない} & & \nagamarushi & \text{整数} & \text{整数} & \text{互いに素である} \\
\nagamarugo & \text{素数} & \text{整数} & \text{互いに素でない} & & \nagamaruroku & \text{素数} & \text{整数} & \text{互いに素である}
\end{array} \]
獨協医科大学 私立 獨協医科大学 2016年 第5問
$xy$平面上の放物線$y=x^2$の$0 \leqq x \leqq 1$に対応する部分の長さを$L$とする.$L$の値を次のようにして求めよう.$L$は定積分
\[ L=\int_0^1 \sqrt{1+[ア]x^2} \, dx \]
で定まる.この定積分を計算するために$\displaystyle x=\frac{e^t-e^{-t}}{4}$として,置換積分を行う.このとき
\[ \frac{dx}{dt}=\frac{e^t+e^{-t}}{4} \]
であり
\[ \sqrt{1+[ア]x^2}=\frac{e^t+e^{-t}}{[イ]} \]
である.

また,$\displaystyle \frac{e^t-e^{-t}}{4}=1$となる$t$の値を$\alpha$とすると,$x$が$0 \to 1$と変化するとき,$t$は$[ウ] \to \alpha$と変化するので,$L$を定める定積分は
\[ L=\frac{1}{[エ]} \int_{\mkakko{ウ}}^\alpha (e^t+e^{-t})^{\mkakko{オ}} \, dt \]
となる.ここで$X=e^\alpha$とおくと,$X$は$2$次方程式
\[ X^2-[カ]X-[キ]=0 \]
の解である.$X>0$なので
\[ X=[ク]+\sqrt{[ケ]} \]
である.これを用いて$\alpha$の値を定め,$L$の値を計算すると
\[ L=\frac{\sqrt{[コ]}}{[サ]}+\frac{1}{[シ]} \log \left( [ス]+\sqrt{[セ]} \right) \]
である.
明治大学 私立 明治大学 2016年 第3問
次の空欄に当てはまる$0$から$9$までの数字を入れよ.ただし,空欄$[サシ]$は$2$桁の数をあらわす.

(1)$k$を自然数とすると
\[ \int_0^\pi \sin^k x \cos x \, dx=[ア] \]
である.
(2)直線$y=\sqrt{3}x$を$\ell$とし,曲線$y=\sqrt{3}x+\sin^2 x$を$C$とする.直線$\ell$上に点$\mathrm{A}$をとり,点$\mathrm{A}$において直線$\ell$と直交する直線を$L$とする.関数$y=\sqrt{3}x+\sin^2 x$は$x$に関する単調増加関数であるので,直線$L$と曲線$C$の共有点は$1$点のみである.その共有点を$\mathrm{B}(t,\ \sqrt{3}t+\sin^2 t)$とする.点$\mathrm{A}$と点$\mathrm{B}$の距離を$h$とおくと,
\[ h=\frac{1}{[イ]} \sin^2 t \]
となる.また,原点$\mathrm{O}$と点$\mathrm{A}$の距離を$p$とする.点$\mathrm{A}$の$x$座標が$0$以上であるときは
\[ p=[ウ]t+\frac{\sqrt{[エ]}}{[オ]} \sin^2 t \]
となる.この等式の右辺を$f(t)$とおく.
$0 \leqq x \leqq \pi$の範囲で曲線$C$と直線$\ell$で囲まれた図形を考え,その図形を直線$\ell$の周りに$1$回転させてできる立体の体積を$V$とすると,$\displaystyle V=\pi \int_0^{\mkakko{カ} \pi} h^2 \, dp$となる.ここで,$p=f(t)$とおいて置換積分すれば,
\[ V=\frac{\pi}{[キ]} \int_0^{\pi} \sin^4 t \, dt \]
が成り立つ.$\displaystyle \int_0^{\pi} \sin^4 t \, dt=\frac{[ク]}{[ケ]} \pi$より,$\displaystyle V=\frac{[コ]}{[サシ]} \pi^2$である.
金沢工業大学 私立 金沢工業大学 2016年 第2問
条件$a_1=5$,$\displaystyle a_{n+1}=\frac{n}{n+1}a_n+9n (n=1,\ 2,\ 3,\ \cdots)$によって定まる数列$\{a_n\}$を考え,$b_n=na_n$とおく.

(1)$b_1=[ア]$,$b_2=[イウ]$である.
(2)$b_{n+1}-b_n=[エ]n(n+1)$である.
(3)$b_{n+1}=[オ]n(n+1)(n+2)+[カ]$である.

(4)$\displaystyle a_n=[キ]n^2-[ク]+\frac{[ケ]}{n}$である.
金沢工業大学 私立 金沢工業大学 2016年 第4問
$2$つの関数$f(x)=x^3+ax^2+bx$,$g(x)=-x^2+cx+3$について,曲線$y=f(x)$,$y=g(x)$は点$(1,\ 0)$で同じ接線をもつとする.ただし,$a,\ b,\ c$は定数とする.

(1)$a=[アイ]$,$b=[ウ]$,$c=[エオ]$である.
(2)$2$つの曲線$y=f(x)$,$y=g(x)$の点$(1,\ 0)$以外の共有点の座標は$([カ],\ [キクケ])$である.
(3)$2$つの曲線$y=f(x)$,$y=g(x)$で囲まれた図形の面積は$\displaystyle \frac{[コ]}{[サ]}$である.
金沢工業大学 私立 金沢工業大学 2016年 第1問
次の問いに答えよ.

(1)$2$次方程式$x^2+3x+1=0$の$1$つの解$x$について,
\[ x+\frac{1}{x}=[アイ],\quad x^2+\frac{1}{x^2}=[ウ],\quad x^4+\frac{1}{x^4}=[エオ] \]
である.
(2)不等式$|x-3|<a$を満たす整数$x$がちょうど$5$個であるような定数$a$の範囲は$[カ]<a \leqq [キ]$である.
(3)$a,\ b$を整数とする.$a$を$13$で割ると$10$余り,$b$を$13$で割ると$7$余るとき,$a+b$,$ab$を$13$で割ると余りはそれぞれ$[ク]$,$[ケ]$である.また,$a^2b+ab^2-a-b$を$13$で割ると余りは$[コ]$である.
(4)男性$3$人と女性$3$人の$6$人を$2$人ずつ$3$組に分ける方法は$[サシ]$通りあり,そのうち各組が男女のペアになる分け方は$[ス]$通りある.
(5)$\displaystyle \tan \theta=\frac{2}{\sqrt{5}} \left( \pi<\theta <\frac{3}{2} \pi \right)$のとき,
\[ \frac{\cos \theta}{1+\cos \theta}+\frac{\sin \theta}{1+\sin \theta}=-\frac{[アイ]+[ウ] \sqrt{[エ]}}{[オ]} \]
である.
(6)関数$y=f(x)$のグラフを$x$軸方向に$-2$だけ,$y$軸方向に$5$だけ平行移動したグラフは,関数$y=3^x$のグラフと直線$y=x$に関して対称である.このとき,もとの関数は$y=\log_{\mkakko{カ}}(x-[キ])-[ク]$である.
(7)実数$x,\ y$が$2$つの不等式$x^2+y \leqq 4$,$y \geqq 0$を満たすとき,$6x+3y$は$x=[ケ]$,$y=[コ]$のとき最大値$[サシ]$をとり,$x=[スセ]$,$y=[ソ]$のとき最小値$[タチツ]$をとる.
(8)正四面体の面にそれぞれ$1$から$4$の数字のついたさいころを$5$回投げるとき,$4$回以上数字$1$のついた面が下になる確率は$\displaystyle \frac{[テ]}{[トナ]}$である.
北海道薬科大学 私立 北海道薬科大学 2016年 第4問
関数$\displaystyle f(x)=\left( \log_4 \frac{x^2}{4} \right)^4-\log_2 \frac{x^4}{32} (1 \leqq x \leqq 16)$について,次の設問に答えよ.

(1)$\log_2 x$の最大値は$[ア]$,最小値は$[イ]$である.
(2)$f(x)$は
\[ f(x)=\left( \log_2 x+[ウエ] \right)^{\mkakko{オ}}+[カキ] \log_2 x+[ク] \]
と表すことができる.
(3)$f(x)$は

$x=[ケコ]$のとき,最大値$[サシ]$
$x=[ス]$のとき,最小値$[セソ]$

をとる.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。