タグ「e^x」の検索結果

1ページ目:全169問中1問~10問を表示)
広島大学 国立 広島大学 2016年 第2問
次の問いに答えよ.

(1)$a$を正の定数とする.関数$\displaystyle f(x)=\frac{e^x-ae^{-x}}{2}$の逆関数$f^{-1}(x)$を求めよ.
(2)$(1)$で求めた$f^{-1}(x)$の導関数を求めよ.
(3)$c$を正の定数とする.$x$軸,$y$軸,直線$x=c$および曲線$\displaystyle y=\frac{1}{\sqrt{x^2+c^2}}$で囲まれる部分の面積を求めよ.
新潟大学 国立 新潟大学 2016年 第4問
$a$を$0<a<1$を満たす実数として$x$の関数$f(x)=ax-\log (1+e^x)$の最大値を$M(a)$とするとき,次の問いに答えよ.ただし必要があれば
\[ \lim_{x \to +0} x \log x=0 \]
が成り立つことを用いてよい.

(1)$M(a)$を$a$を用いて表せ.
(2)$a$の関数$y=M(a)$の最小値とそのときの$a$の値を求めよ.
(3)$a$の関数$y=M(a)$のグラフをかけ.
滋賀医科大学 国立 滋賀医科大学 2016年 第4問
次の問いに答えよ.

(1)実数$a$に対して
\[ f(x)=2x^3-9ax^2+12a^2x \]
とおく.定義域を$\{x \;|\; x \leqq 1 \text{または} x \geqq 4 \}$とする関数$y=f(x)$が逆関数を持つような$a$の範囲を求めよ.
(2)$b$を実数とし,$x \geqq 0$における関数$g(x)$を
\[ g(x)=b \sqrt{\sqrt{8x+1}-1} \]
と定める.$2$つの曲線$y=e^x$と$y=g(x)$はただ$1$点の共有点を持つとする.

(i) $b$を求めよ.
(ii) $2$つの曲線$y=e^x,\ y=g(x)$と$y$軸で囲まれた部分の面積を求めよ.
埼玉大学 国立 埼玉大学 2016年 第3問
次の問いに答えよ.

(1)$\displaystyle f(x)=\frac{e^x}{x^2+3x+1}$とする.$x>0$の範囲で$f(x)$が最小になる$x$の値と,そのときの$f(x)$の値を求めよ.
(2)$a>0$とする.曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と$2$つの直線$\ell_1:y=2e^ax$,$\ell_2:y=(a^2+3a+1)x$を考える.$C$と$\ell_1$と$\ell_2$で囲まれる部分を$D$とする.

\mon[(ア)] $C$と$\ell_1$の交点,および,$C$と$\ell_2$の交点の座標を求めよ.
\mon[(イ)] $(1)$を用いて$2e^a>a^2+3a+1$であることを示せ.ただし,$e=2.7182 \cdots$であることは用いてよい.
\mon[(ウ)] $D$の面積を$a$を用いて表せ.
\mon[(エ)] $D$の面積を最小にする$a$の値と,そのときの$D$の面積を求めよ.
埼玉大学 国立 埼玉大学 2016年 第3問
次の問いに答えよ.

(1)$\displaystyle f(x)=\frac{e^x}{x^2+3x+1}$とする.$x>0$の範囲で$f(x)$が最小になる$x$の値と,そのときの$f(x)$の値を求めよ.
(2)$a>0$とする.曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と$2$つの直線$\ell_1:y=2e^ax$,$\ell_2:y=(a^2+3a+1)x$を考える.$C$と$\ell_1$と$\ell_2$で囲まれる部分を$D$とする.

\mon[(ア)] $C$と$\ell_1$の交点,および,$C$と$\ell_2$の交点の座標を求めよ.
\mon[(イ)] $(1)$を用いて$2e^a>a^2+3a+1$であることを示せ.ただし,$e=2.7182 \cdots$であることは用いてよい.
\mon[(ウ)] $D$の面積を$a$を用いて表せ.
\mon[(エ)] $D$の面積を最小にする$a$の値と,そのときの$D$の面積を求めよ.
香川大学 国立 香川大学 2016年 第4問
座標平面上の曲線$C:y=e^x$に対し,次の問に答えよ.

(1)原点から曲線$C$に引いた接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$,および$y$軸で囲まれた図形$D$を図示せよ.
(3)$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(4)部分積分法を用いて,不定積分$\displaystyle I=\int \log y \, dy$,$\displaystyle J=\int (\log y)^2 \, dy$を求めよ.
(5)$D$を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
岩手大学 国立 岩手大学 2016年 第5問
$a$を定数とし,曲線$y=e^x-a(x-2)$を$C$とする.曲線$C$と$x$軸が接しているとき,次の問いに答えよ.

(1)曲線$C$と$x$軸の接点の$x$座標,および定数$a$の値を求めよ.
(2)曲線$C$と$x$軸および$y$軸で囲まれた部分を$x$軸の周りに$1$回転してできる回転体の体積を求めよ.
千葉大学 国立 千葉大学 2016年 第3問
以下の問いに答えよ.

(1)$x>0$において,不等式$\log x<x$を示せ.
(2)$1<a<b$のとき,不等式
\[ \frac{1}{\log a}-\frac{1}{\log b}<\frac{b-a}{a(\log a)^2} \]
を示せ.
(3)$x \geqq e$において,不等式
\[ \int_e^x \frac{dt}{t \log (t+1)} \geqq \log (\log x)+\frac{1}{2(\log x)^2}-\frac{1}{2} \]
を示せ.ただし,$e$は自然対数の底である.
小樽商科大学 国立 小樽商科大学 2016年 第5問
$2$曲線$y=e^x-1$,$\displaystyle y=e^{-x}+\frac{1}{2}$と$y$軸で囲まれた部分の面積を求めよ.
香川大学 国立 香川大学 2016年 第4問
座標平面上の曲線$C:y=e^x$に対し,次の問に答えよ.

(1)原点から曲線$C$に引いた接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$,および$y$軸で囲まれた図形$D$を図示せよ.
(3)$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(4)部分積分法を用いて,不定積分$\displaystyle I=\int \log y \, dy$,$\displaystyle J=\int (\log y)^2 \, dy$を求めよ.
(5)$D$を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
スポンサーリンク

「e^x」とは・・・

 まだこのタグの説明は執筆されていません。