タグ「最小値」の検索結果

10ページ目:全1222問中91問~100問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.ただし設問$(2)$の空欄$[え]$には選択肢より適切な数を選んで記入しなさい.

(1)定員$2$名,$3$名,$4$名の$3$つの部屋がある.

(i) $2$人の教員と$7$人の学生の合計$9$人をこれらの$3$つの部屋に定員どおりに入れる割り当て方は$[あ]$とおりである.また,その割り当て方のなかで$2$人の教員が異なる部屋に入るようにする割り当て方は$[い]$とおりである.
(ii) $7$人の学生のみを,これらの$3$つの部屋に定員を超えないように入れる割り当て方は$[う]$とおりである.ただし誰も入らない部屋があってもよい.

(2)二元一次不定方程式$13x+11y=c$は$c=[え]$のとき$x>0$,$y>0$なる整数解をちょうど$1$組もつ.そのときの解は$(x,\ y)=([お],\ [か])$である.
\begin{waku}[$[え]$の選択肢]
$222 \quad 223 \quad 224$
\end{waku}
(3)すべての実数$m$に対して
\[ f(m)=\int_0^1 |e^x-m|e^x \, dx \]
により定義される関数$f(m)$は,$m=[き]$において最小値$[く]$をとる.
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$0<\theta<\pi$とし,$t=\cos 2\theta$とおく.$\displaystyle \frac{\sin 3\theta}{\sin \theta}$と$\displaystyle \frac{\sin 5\theta}{\sin \theta}$をそれぞれ$t$を用いて表すと$[ア]$と$[イ]$となる.$\sin 5\theta=0$となる$\theta$のうち,$0<\theta<\pi$において最小のものの値は$[ウ]$である.したがって,$\displaystyle \cos \frac{2\pi}{5}$の値は$[エ]$である.
(2)$1$から$5$までの異なる整数が$1$つずつ書いてある$5$枚のカードを左から右へ順に並べたとき,カードに書かれた整数を左から$a_1,\ a_2,\ a_3,\ a_4,\ a_5$とおく.並べ方は全部で$[オ]$通りである.そのうち$a_1<a_2<a_3$かつ$a_3>a_4>a_5$となる並べ方は$[カ]$通りである.また,$a_1 \neq 1$かつ$a_2 \neq 2$となる並べ方は$[キ]$通りである.
(3)$4$次関数$y=3x^4-8x^3$は,$x=[ク]$のとき最小値$[ケ]$をとる.また直線$\ell$がこの$4$次関数が表す曲線と$2$点で接するとき,$2$つの接点のうち$x$座標が大きい方の$x$座標の値は$[コ]$である.
日本女子大学 私立 日本女子大学 2016年 第2問
$a,\ b$を実数とするとき,以下の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)定積分$\displaystyle I=\int_{-1}^1 {(e^x-a-bx)}^2 \, dx$を求めよ.

(2)$I$の最小値とそのときの$a,\ b$の値を求めよ.
星薬科大学 私立 星薬科大学 2016年 第6問
$\overrightarrow{a}=(1,\ 3,\ -2)$,$\overrightarrow{b}=(1,\ -1,\ 1)$,$t$を実数として次の問に答えよ.

(1)$|\overrightarrow{a|+t \overrightarrow{b}}$は$\displaystyle t=\frac{[$50$]}{[$51$]}$で最小値$\displaystyle \frac{\sqrt{[$52$][$53$]}}{[$54$]}$をとる.

(2)$\overrightarrow{a}+t \overrightarrow{b}$と$\overrightarrow{b}$のなす角が${45}^\circ$のとき,$\displaystyle t=\frac{[$55$]+\sqrt{[$56$][$57$]}}{[$58$]}$である.
学習院大学 私立 学習院大学 2016年 第4問
連立不等式
\[ 2x-y-2 \geqq 0,\quad x \leqq \frac{5}{2},\quad y \geqq 1 \]
の表す領域を$D$とする.点$\mathrm{P}(x,\ y)$が領域$D$を動くとき,$\displaystyle \frac{y}{x^2}$の最大値と最小値を求めよ.また,それぞれの値を与える点$\mathrm{P}$の座標を求めよ.
東北学院大学 私立 東北学院大学 2016年 第2問
不等式
\[ x^2+y^2-2x-2y+1 \leqq 0 \]
の表す領域を$A$とし,不等式
\[ \log_{10}(y-1)-2 \log_{10}|x-1| \geqq 0 \]
で表される領域を$B$とする.このとき,以下の問いに答えよ.

(1)$A$を図示せよ.
(2)$B$を図示せよ.
(3)点$(x,\ y)$が$A$と$B$の共通部分$A \cap B$を動くとき,$x+y$の最大値および最小値を求めよ.
東北学院大学 私立 東北学院大学 2016年 第3問
関数$f(x)=-x^2+1$について以下の問いに答えよ.

(1)$y=f(x)$のグラフと$x$軸で囲まれた部分の面積$A$を求めよ.
(2)$0<t<1$とする.$A$から,$4$点$(1,\ 0)$,$(t,\ -t^2+1)$,$(-t,\ -t^2+1)$,$(-1,\ 0)$を結んでできる台形の面積を引いた残りの面積$S(t)$を求めよ.
(3)$S(t)$の最小値を求めよ.
久留米大学 私立 久留米大学 2016年 第4問
座標平面上で,関数$f(x)=\sqrt{6-x}$で表される曲線$C:y=f(x)$を考える.$4 \leqq t \leqq 5$を満たす実数$t$に対して,曲線$C$上の点$(t,\ f(t))$と$(t,\ 0)$,$(2,\ 0)$および$(2,\ f(t))$の$4$つの点を頂点とする四角形の面積を$S(t)$とする.

(1)$S(t)$を$t$を用いて表すと$[$9$]$となる.
(2)$S(t)$は$t=[$10$]$のとき最大値$[$11$]$をとり,$t=[$12$]$のとき最小値$[$13$]$をとる.
(3)区間$[4,\ 5]$を$n$等分してその端点と分点を小さい順に$t_0=4,\ t_1,\ t_2,\ \cdots,\ t_n=5$とする.極限値$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n S(t_k)$の値を求めると$[$14$]$となる.ただし,$n$は正の整数とする.
愛知工業大学 私立 愛知工業大学 2016年 第1問
次の$[ ]$を適当に補え.$(6)$,$(7)$は選択問題である.

(1)$a$を定数とする.不等式$x^2-(4a+1)x+4a^2+2a<0$をみたす$x$の範囲は$[ア]$である.また,不等式$x^2-(4a+1)x+4a^2+2a<0$をみたす整数$x$が$x=2$だけであるような$a$の範囲は$[イ]$である.
(2)数列$\{a_n\}$は関係式
\[ a_1=3,\quad a_{n+1}-a_n=2(3^n-n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたすとする.このとき,$a_4=[ウ]$であり,$a_n=[エ]$である.
(3)$\displaystyle \log_2(4-x)+\log_4(x-1)=\frac{1}{2}$をみたす$x$は$x=[オ]$である.
(4)$a$を定数とし,$f(x)=x^3-3x^2-9x+a$とする.区間$-2 \leqq x \leqq 0$における$f(x)$の最小値が$5$であるとき,$a=[カ]$である.またこのとき,区間$-2 \leqq x \leqq 0$における$f(x)$の最大値は$[キ]$である.
(5)$\displaystyle z=\frac{1+i}{\sqrt{3}+i}$とする.$z^n$が実数となる最小の自然数$n$は$n=[ク]$であり,このとき,$z^n=[ケ]$である.ただし,$i$は虚数単位である.
(6)$1$枚の硬貨を投げ,表が出たときは白球$1$個を壺に入れ,裏が出たときは黒球$1$個を壺に入れる.硬貨を$3$回投げて壺に$3$個の球が入っている.

(i) 壺に白球$1$個と黒球$2$個が入っている確率は$[コ]$である.
(ii) 壺の中から$2$個の球を同時に取り出したとき,それが白球$1$個と黒球$1$個である確率は$[サ]$である.

(7)等式$\displaystyle \frac{1}{x}+\frac{5}{y}=1$をみたす自然数$x,\ y$の組は$(x,\ y)=[シ]$である.
名城大学 私立 名城大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$\displaystyle x=\frac{2}{\sqrt{5}+1},\ y=\frac{\sqrt{5}+1}{2}$のとき,$x^2+y^2=[ア]$,$x^2-y^2=[イ]$である.

(2)関数$y=-2x^2+6x-5 (0 \leqq x \leqq 2)$の最大値は$[ウ]$,最小値は$[エ]$である.
(3)円$C_1:x^2+y^2=1$上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$と点$\mathrm{A}(3,\ 0)$の中点$\mathrm{Q}$の座標は$[オ]$である.これより,$\mathrm{P}$が$C_1$上をもれなく動くとき,$\mathrm{Q}$の描く軌跡は円であり,その方程式は$[カ]$である.
(4)放物線$C_2:y=x^2-2x$と直線$\ell:y=x$がある.$C_2$と$x$軸によって囲まれる部分の面積は$[キ]$であり,$C_2$と$\ell$によって囲まれる部分の面積は$[ク]$である.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。