タグ「最大」の検索結果

5ページ目:全460問中41問~50問を表示)
明治大学 私立 明治大学 2016年 第1問
$(1)$~$(5)$において,$\nagamaruA$,$\nagamaruB$,$\nagamaruC$の値の大小関係を調べ,最大のものと最小のものを答えよ.

(1)$\{1,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 6,\ 6,\ 7\}$の,
$\nagamaruA$ 平均値 \qquad $\nagamaruB$ 中央値(メジアン) \quad $\nagamaruC$ 最頻値(モード)
(2)$\theta$が第$2$象限の角で,$\displaystyle \sin \theta=\frac{2}{3}$のとき,
$\displaystyle \nagamaruA \sin \left( \theta-\frac{\pi}{2} \right)$ \qquad $\nagamaruB \cos \theta$ \qquad $\nagamaruC \tan \theta$
(3)$\nagamaruA$ 半径$4$,面積$4 \pi$の扇形の弧の長さ
$\nagamaruB$ 半径$5$,中心角$\displaystyle \frac{\pi}{2}$の扇形の弧の長さ
$\nagamaruC$ 半径$6$,中心角${72}^\circ$の扇形の弧の長さ
(4)$2x^3+x^2-8x-3$を$x+2$で割ったときの商を$f(x)$としたとき,
$\nagamaruA f(0)$ \qquad $\nagamaruB f(1)$ \qquad $\nagamaruC f(2)$
(5)$f(x)=x^3-x^2-5x+5$のとき,
$\displaystyle \nagamaruA f \left( -\frac{2236}{1001} \right)$ \qquad $\displaystyle \nagamaruB f \left( \frac{98}{299} \right)$ \qquad $\displaystyle \nagamaruC f\left( \frac{502}{301} \right)$
大阪薬科大学 私立 大阪薬科大学 2016年 第1問
次の問いに答えなさい.

(1)$4$個のさいころを同時に投げるとき,出る目の最大値が$5$以上である確率を$p$,出る目の最大値が$4$以下である確率を$q$とする.このとき,$p$と$q$の間で成り立つ大小関係を次のア~ウのうちからひとつ選べ.ただし,どのさいころも$1$から$6$までの目が同様に確からしく出るとする.

ア:「$p<q$」 \qquad イ:「$p=q$」 \qquad ウ:「$p>q$」

(2)第$2$項が$3$,第$22$項が$33$である等差数列の第$28$項の値を求めよ.
(3)$n$を自然数とする.$(5x+1)^n$の展開式における$x^2$の項の係数が$700$である$n$の値を求めよ.
(4)$\theta$は$0 \leqq \theta<2\pi$を満たす実数とする.$x$の関数
\[ f(x)=2x^3-3(2+\sin \theta)x^2+(1+\sin \theta)(2+\sin \theta)^2 \]
の極小値を$m(\theta)$とし,$\theta$が$0 \leqq \theta<2\pi$の範囲を動くときの$m(\theta)$のとり得る最大の値を$M$とする.このとき,$M$の値,および$m(\theta)=M$を満たす$\theta$の値を求めよ.
明治大学 私立 明治大学 2016年 第1問
次の各問の$[ ]$に当てはまる数を入れよ.

(1)$100$以下の自然数で,$2$と$5$を共に素因数にもち,それ以外の素数を素因数にもたない数の個数は,$[ ]$個である.
同様に$100$以下の自然数で,$2$と$3$を共に素因数にもち,それ以外の素数を素因数にもたない数の個数は,$[ ]$である.
(2)曲線$C:y=x^3-3x+16$を第$1$象限で考える.曲線$C$の接線で,点$(0,\ 0)$を通るものを$\ell$とするとき,$\ell$の傾きは,$[ ]$であり,$C$,$\ell$と$y$軸で囲まれた領域の面積は,$[ ]$である.
(3)$1$辺の長さが$y$の正方形を$\mathrm{ABCD}$とし,$2$つの対角線の交点を$\mathrm{O}$とする.$\mathrm{O}$から垂直に高さが$x$の点$\mathrm{E}$をとり,四角錐$\mathrm{E}$-$\mathrm{ABCD}$を考える.$\mathrm{AE}$の長さが$\displaystyle \frac{\sqrt{3}}{2}$のとき,体積が最大となるのは,
\[ x=[ ],\quad y=[ ] \]
のときである.
東京女子大学 私立 東京女子大学 2016年 第6問
初項が$3$である数列$\{a_n\}$と,その階差数列$\{b_n\}$が,すべての自然数$n$に対して,条件$a_n-b_n=-1$をみたしている.このとき,以下の設問に答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)$a_n \leqq 99999999$となる最大の$n$を求めよ.$\log_{10}2=0.3010$は用いてよい.
愛知学院大学 私立 愛知学院大学 2016年 第1問
次の問に答えなさい.

(1)$360$との最小公倍数が$1800$である自然数の個数は$[ア]$である.
(2)$62,\ 96,\ 232$のいずれを割っても余りが$11$となる最大の自然数は$[イ]$である.
(3)$20212_{(3)}$を$5$進法で表すと$[ウ]$である.
愛知学院大学 私立 愛知学院大学 2016年 第4問
縦$12 \, \mathrm{cm}$,横$18 \, \mathrm{cm}$の長方形の厚紙の四隅から一辺の長さが$a \, \mathrm{cm}$の正方形を切り取り,ふたのない直方体の箱を作ります.この直方体の体積を$V \, \mathrm{cm}^3$としたとき,次の問に答えなさい.

(1)体積$V$を$a$の式で表しなさい.
(2)体積$V$が最大となる$a$を求めなさい.
(3)$V$の最大値を求めなさい.
千葉工業大学 私立 千葉工業大学 2016年 第1問
次の各問に答えよ.

(1)$\displaystyle \frac{3-i}{3+i}=\frac{[ア]-[イ]i}{[ウ]}$(ただし,$i^2=-1$)である.
(2)$x$の$2$次方程式$x^2-2(k-4)x+2k=0$が重解をもつような定数$k$の値は小さい順に$[エ]$,$[オ]$である.
(3)$2$次関数$\displaystyle y=\frac{1}{3}x^2-6x+35$のグラフは,放物線$\displaystyle y=\frac{1}{3}x^2$を$x$軸方向に$[カ]$,$y$軸方向に$[キ]$だけ平行移動した放物線である.
(4)$10$個の値$1,\ 3,\ 8,\ 5,\ 8,\ [ク],\ 3,\ 7,\ 7,\ 1$からなるデータの平均値は$5$,最頻値は$[ケ]$,中央値は$[コ]$である.
(5)$x>0$において,$\displaystyle \left( x-\frac{1}{2} \right) \left( 2-\frac{9}{x} \right)$は$\displaystyle x=\frac{[サ]}{[シ]}$のとき,最小値$[スセ]$をとる.
(6)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$から異なる$3$個の数字を使ってできる$3$桁の整数は$[ソタ]$個あり,そのうち偶数のものは$[チツ]$個ある.
(7)$0 \leqq \theta<2\pi$とする.$\displaystyle \cos 3\theta=\frac{1}{2}$をみたす$\theta$のうち,最大のものは$\displaystyle \frac{[テト]}{[ナ]} \pi$である.
(8)$\displaystyle \int_{-2}^1 (x^3-3x+2) \, dx=\frac{[ニヌ]}{[ネ]}$である.
東京経済大学 私立 東京経済大学 2016年 第2問
長さ$3$の線分$\mathrm{AB}$を直径とする半円周上を点$\mathrm{P}$が動いている.$\angle \mathrm{PAB}={15}^\circ$のとき,$\displaystyle \mathrm{BP}=\frac{[キ] \left( \sqrt{[ク]}-\sqrt{[ケ]} \right)}{[コ]}$である.また,$\angle \mathrm{PAB}=\theta$とおくとき,$\sqrt{3} \mathrm{AP}+\mathrm{BP}$の値が最大となるのは,$\displaystyle \theta=\frac{[サ]}{[シ]} \pi$のときで,最大値は$[ス]$である.
千葉工業大学 私立 千葉工業大学 2016年 第4問
$x$の$2$次関数$f_1(x),\ f_2(x),\ \cdots,\ f_n(x),\ \cdots$を条件

$f_1(x)=x^2-5x,$

$\displaystyle f_{n+1}(x)=x^2 \int_0^2 \{ t{f_n}^\prime(t)-f_n(t) \} \, dt+x \int_0^2 f_n(t) \, dt \quad (n=1,\ 2,\ 3,\ \cdots)$

により定める.さらに,数列$\{a_n\}$,$\{b_n\} (n=1,\ 2,\ 3,\ \cdots)$を
\[ f_n(x)=a_nx^2+b_nx \]
により定める.このとき,次の問いに答えよ.

(1)${f_n}^\prime(x)=[ア]a_nx+b_n$であり,数列$\{a_n\}$,$\{b_n\}$は
\[ a_{n+1}=\frac{[イ]}{[ウ]}a_n,\quad b_{n+1}=\frac{[エ]}{[オ]}a_n+[カ]b_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたす.
(2)$\displaystyle a_n=\left( \frac{[キ]}{[ク]} \right)^{n-1} (n=1,\ 2,\ 3,\ \cdots)$であり,$\displaystyle c_n=\frac{b_n}{{[カ]}^{n-1}}$とおくと,$\displaystyle c_{n+1}-c_n=\left( \frac{[ケ]}{[コ]} \right)^n (n=1,\ 2,\ 3,\ \cdots)$が成り立つ.
(3)$\displaystyle f_n(x)=\left( \frac{[キ]}{[ク]} \right)^{n-1}x^2+\left\{ [サ] \cdot \left( \frac{[シ]}{[ス]} \right)^{n-1}-[セ] \cdot {[ソ]}^{n-1} \right\} x$
である.
(4)$x$の方程式$f_n(x)=0$の$x=0$とは異なる解を$x=p_n$とする.不等式$p_n>M$がすべての正の整数$n$に対して成り立つような定数$M$のうち,最大の整数は$M=[タチ]$であり,$[タチ]<p_n<[タチ]+1$となるような最小の$n$は$[ツ]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
玉川大学 私立 玉川大学 2016年 第2問
次の$[ ]$を埋めよ.

(1)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{BC}=\sqrt{3}$であるとする.$\mathrm{CA}=x$とおくとき,
\[ \cos \angle \mathrm{BAC}=\frac{[ア]+x^2}{[イ]x} \]
である.$\angle \mathrm{BAC}$の最大は,${[ウエ]}^\circ$であり,このとき,$x=[オ]$である.
(2)$1 \leqq x \leqq 100$とする.このとき,方程式$2x+3y=31$をみたす整数の組$(x,\ y)$の個数は,$[カキ]$個で,$x$が最小となる解は,$(x,\ y)=([ク],\ [ケ])$である.
(3)方程式
\[ 2 \sin^3 x+\cos 2x-\sin x=0 \]
を解くと,$n$を任意の整数として
\[ x=\frac{\pi}{[コ]}+2n \pi,\ \frac{\pi}{[サ]}+\frac{1}{[シ]}n \pi \]
となる.
(4)$2$つのベクトルを$\overrightarrow{a}=(t,\ -1)$,$\overrightarrow{b}=(t+\sqrt{2}-1,\ \sqrt{2})$とする.このとき,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が鋭角になる条件は,
\[ t>[ス],\quad t<-\sqrt{[セ]} \]
であり,鈍角になる条件は,
\[ -\sqrt{[ソ]}<t<[タ] \]
である.
(5)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=n^2+n$で表されるとき,
\[ a_n=[チ]n \]
である.また,
\[ \sum_{k=1}^n (a_k+1)^2=\frac{n}{[ツ]} ([テ]n^2+[トナ]n+[ニヌ]) \]
である.
スポンサーリンク

「最大」とは・・・

 まだこのタグの説明は執筆されていません。