タグ「最初」の検索結果

2ページ目:全139問中11問~20問を表示)
滋賀大学 国立 滋賀大学 2016年 第2問
数列
\[ \frac{1}{1},\ \frac{1}{2},\ \frac{2}{2},\ \frac{1}{3},\ \frac{2}{3},\ \frac{3}{3},\ \cdots,\ \frac{1}{n},\ \frac{2}{n},\ \cdots,\ \frac{n-1}{n},\ \frac{n}{n},\ \cdots \]
を次のような群に分ける.


$\displaystyle \frac{1}{1} \;\bigg|\; \frac{1}{2},\ \frac{2}{2} \;\bigg|\; \frac{1}{3},\ \frac{2}{3},\ \frac{3}{3} \;\bigg|\; \cdots \;\bigg|\; \frac{1}{n},\ \frac{2}{n},\ \cdots,\ \frac{n-1}{n},\ \frac{n}{n} \;\bigg|\; \cdots$
\hspace{-2mm}{\scriptsize 第$1$群 \quad\; 第$2$群 \qquad\qquad 第$3$群 \hspace{32mm} 第$n$群}

このとき,次の問いに答えよ.

(1)第$28$群に入るすべての項の和を求めよ.
(2)第$n$群の最初の数が第何項かを求めよ.
(3)第$2016$項を求めよ.
九州工業大学 国立 九州工業大学 2016年 第2問
原点$\mathrm{O}$を中心とする半径$1$の円を$C_1$とする.円$C_1$に外接しながら,半径$1$の円$C_2$がすべることなく回転する.円$C_2$の中心を$\mathrm{P}$とし,円$C_2$上の点$\mathrm{Q}$は最初,$x$軸上の点$\mathrm{A}(3,\ 0)$にあるものとする.半直線$\mathrm{PQ}$上で点$\mathrm{P}$からの距離が$2$の点を$\mathrm{R}$とし,$\mathrm{OP}$が$x$軸の正の向きとなす角を$\theta$とする.$C_2$が回転して$\theta$が$0$から$2\pi$まで変化するとき,点$\mathrm{R}$が描く曲線を$C$とする.曲線$C$の概形を図$1$に示す.以下の問いに答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$を通り$x$軸と平行な直線を$\ell$とする.直線$\ell$と線分$\mathrm{PR}$のなす角$\alpha$を,$\theta$を用いて表せ.また,$\mathrm{R}$の座標を$\theta$を用いて表せ.
(3)曲線$C$と$x$軸の共有点の座標をすべて求めよ.
(4)曲線$C$と$y$軸の共有点の座標をすべて求めよ.
(5)点$\mathrm{R}$の$x$座標が最小となるときの点$\mathrm{R}$の座標をすべて求めよ.
(6)曲線$C$と$x$軸,$y$軸に囲まれた図$2$の斜線部分の面積を求めよ.
徳島大学 国立 徳島大学 2016年 第4問
赤玉$1$個と白玉$3$個が入っている袋$\mathrm{A}$から玉を$2$個取り出し,空の袋$\mathrm{B}$に入れた状態を最初の入れ方とする.次の$(ⅰ)$,$(ⅱ)$を順に行うことを$1$回の作業とする.


(i) 袋$\mathrm{A}$から玉を$1$個取り出し,その玉が白玉ならば袋$\mathrm{A}$に戻し,赤玉ならば袋$\mathrm{B}$に入れてよくかき混ぜた上で袋$\mathrm{B}$から玉を$1$個取り出して袋$\mathrm{A}$に入れる.
(ii) 袋$\mathrm{B}$から玉を$1$個取り出し,その玉が白玉ならば袋$\mathrm{B}$に戻し,赤玉ならば袋$\mathrm{A}$に入れてよくかき混ぜた上で袋$\mathrm{A}$から玉を$1$個取り出して袋$\mathrm{B}$に入れる.

最初の入れ方で袋$\mathrm{A}$に赤玉がある確率を$P_0$とし,上の作業を$n$回行った後で袋$\mathrm{A}$に赤玉がある確率を$P_n (n=1,\ 2,\ 3,\ \cdots)$とする.玉は色以外に区別できないものとして,次の問いに答えよ.

(1)$P_0,\ P_1$を求めよ.
(2)$P_n$を求めよ.
(3)最初の入れ方から作業を$n$回行って袋$\mathrm{A}$に赤玉があったとき,最初の入れ方で袋$\mathrm{A}$に赤玉がある確率を求めよ.
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.関数$f(\theta)=\sin \theta+\sqrt{3} \cos \theta$は最小値$[ア]$を$\theta=[イ]$でとる.関数$\displaystyle g(\theta)=\sqrt{3} f(\theta)-2 \cos \left( \theta+\frac{\pi}{3} \right)$は最小値$[ウ]$を$\theta=[エ]$でとる.
(2)箱から玉を$1$個取り出し,この玉に$1$個の玉を新たに加えた合計$2$個の玉を箱に戻す試行を繰り返す.新たに加える玉の色は白あるいは黒のみとする.最初に,$2$個の白玉と$3$個の黒玉が入っている箱を考える.新たに加える玉の色は取り出した玉と同色とすると,$3$回目の試行において白玉を取り出す確率は$[オ]$,$n$回目の試行において白玉を取り出す確率$P_n$は$[カ]$,極限$\displaystyle \lim_{n \to \infty}P_n$は$[キ]$である.次に,$3$個の白玉と$4$個の黒玉が入っている箱を考える.新たに加える玉の色は取り出した玉と異なる色とすると,$3$回目の試行において白玉を取り出す確率は$[ク]$である.$n$回目の試行において白玉を取り出す確率を$Q_n$とすると,$Q_n$は漸化式$\displaystyle Q_n=[ケ]Q_{n-1}+\frac{1}{6+n} (n \geqq 2)$を満たし,極限$\displaystyle \lim_{n \to \infty}Q_n$は$[コ]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$チームが試合を行う.第$1$試合に$\mathrm{A}$と$\mathrm{B}$が対戦する.第$2$試合以降は,直前の試合に勝ったチームが残りの$1$チームと対戦することを繰り返す.最初に$2$連勝したチームを優勝とする.いずれのチームも試合に勝つ確率は$\displaystyle \frac{1}{2}$であり,各試合に引き分けはないものとする.このとき,

(1)第$5$試合で$\mathrm{A}$が優勝する確率は$\displaystyle \frac{[$41$]}{[$42$][$43$]}$であり,第$6$試合で$\mathrm{C}$が優勝する確率は$\displaystyle \frac{[$44$]}{[$45$][$46$]}$である.
(2)第$6$試合もしくはそれ以前に$\mathrm{B}$,$\mathrm{C}$が優勝する確率は,それぞれ$\displaystyle \frac{[$47$][$48$]}{[$49$][$50$]}$,$\displaystyle \frac{[$51$]}{[$52$][$53$]}$である.

(3)$\mathrm{A}$が第$1$試合で勝ち,かつ$\mathrm{A}$が第$3n$試合もしくはそれ以前に優勝する確率を$n$の式で表すと,$\displaystyle \frac{[$54$]}{[$55$]} \left\{ [$56$]-\left( \frac{[$57$]}{[$58$]} \right)^n \right\}$である.ただし,$n$は自然数とする.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$3$つの袋$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.袋$\mathrm{A}$には,$1$から$7$までの番号が書かれた玉がそれぞれ$2$個ずつ,計$14$個入っている.また,袋$\mathrm{B}$,袋$\mathrm{C}$には何も入っていない.以下,番号$i$が書かれた玉を「玉$i$」と呼ぶことにする.

袋$\mathrm{A}$から無作為に玉を$1$個取り出して袋$\mathrm{B}$に入れる.ここで袋$\mathrm{B}$に入れられた玉を玉$i$とするとき,玉$i-1$,玉$i$,玉$i+1$のうち袋$\mathrm{A}$に入っているものをそれぞれ$1$個ずつ取り出して袋$\mathrm{C}$に入れる.この一連の操作を繰り返す.
例えば,$1$回目の操作の最初に玉$7$が袋$\mathrm{B}$に入れられたとする.このとき,袋$\mathrm{A}$には玉$6$と玉$7$は入っているが,玉$8$は入っていないので,玉$6$と玉$7$が$1$個ずつ袋$\mathrm{A}$から袋$\mathrm{C}$に移される.以上で$1$回目の操作が終わり,袋$\mathrm{A}$に玉$1,\ 1,\ 2,\ 2,\ 3,\ 3,\ 4,\ 4,\ 5,\ 5,\ 6$の計$11$個が入った状態で$2$回目の操作を始める.


(1)$1$回目の操作で玉$4$が袋$\mathrm{B}$に入れられたとき,$2$回目の操作で玉$5$が袋$\mathrm{B}$に入れられる確率は$\displaystyle \frac{[$43$]}{[$44$][$45$]}$である.

(2)$1$回目の操作で玉$2$が袋$\mathrm{B}$に入れられ,かつ$2$回目の操作で玉$1$が袋$\mathrm{B}$に入れられる確率は$\displaystyle \frac{[$46$]}{[$47$][$48$]}$である.

$1 \leqq i<j \leqq 7$を満たす整数$i,\ j$に対し,$2$回の操作を行った後に袋$\mathrm{B}$に玉$i$と玉$j$が入っている事象を$B_{i,j}$とし,事象$B_{i,j}$の確率を$P(B_{i,j})$で表す.

(3)$\displaystyle P(B_{1,2})=\frac{1}{7} \times \frac{[$49$]}{11}+\frac{1}{7} \times \frac{[$50$]}{10}=\frac{[$51$]}{110}$である.同様に,

$\displaystyle P(B_{1,3})=\frac{[$52$]}{[$53$][$54$]},\quad P(B_{1,7})=\frac{[$55$]}{[$56$][$57$]},$

$\displaystyle P(B_{2,3})=\frac{[$58$]}{[$59$][$60$]},\quad P(B_{2,4})=\frac{[$61$]}{[$62$][$63$]}$

である.
(4)$\comb{7}{2}$個の事象$B_{1,2},\ B_{1,3},\ \cdots,\ B_{6,7}$のうち,起こる確率が$P(B_{1,2})$であるものは$[$64$]$個,$P(B_{1,3})$であるものは$[$65$]$個,$P(B_{1,7})$であるものは$[$66$]$個,$P(B_{2,3})$であるものは$[$67$]$個,$P(B_{2,4})$であるものは$[$68$]$個である.

(5)$3$回の操作の後,袋$\mathrm{B}$に入っている玉の番号が全て偶数となる確率は$\displaystyle \frac{[$69$]}{[$70$][$71$]}$である.
早稲田大学 私立 早稲田大学 2016年 第3問
同じ大きさのカードが$8$枚ある.カードそれぞれに$1$から$8$までの整数がひとつ書かれており,それぞれの整数は$1$枚にのみ書かれている.壺にこれら$8$枚のカードを入れる.

(1)この壺から無作為に$3$枚のカードを同時に引く.引いたカードの$2$枚には,$1,\ 2,\ 3$のうちのどれかふたつの数字が書かれており,かつ,残りの$1$枚には,$4$から$8$までのどれかひとつの数字が書かれている確率は$[チ]$である.
(2)$(1)$で引いたカードをすべて壺に戻す.壺から無作為に$3$枚のカードを同時に引き,それらを戻さずに,続けて無作為に$2$枚のカードを同時に引く.最初に引いた$3$枚のカードには,$1,\ 2,\ 3$のうちのどれかふたつの数字と,$4$から$8$までのどれかひとつの数字が書かれており,かつ,最後に引いた$2$枚のカードには,$7,\ 8$のうちのどれかひとつの数字と,$1$から$6$までのどれかひとつの数字が書かれている確率は$[ツ]$である.
(3)$(2)$で引いたカードをすべて壺に戻す.次に,$8$個の箱を横に並べ,左から順に$1$から$8$までの番号をつける.壺から$1$枚ずつカードを無作為に引き,引いた順番と同じ番号の箱にカードを入れていく.例えば,$3$枚目に引いたカードは番号$3$の箱に入れる.このとき,奇数が書かれているすべてのカード($1,\ 3,\ 5,\ 7$の$4$枚)は,カードの数字と同じ番号の箱に入り,かつ,偶数が書かれているすべてのカード($2,\ 4,\ 6,\ 8$の$4$枚)は,カードの数字と異なる番号の箱に入っている確率は$[テ]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
実数$x$に対して,$[x]$は$x$以下の最大の整数を表すものとする.

(1)数列$\displaystyle a_1=\frac{1}{[\sqrt{1}]},\ a_2=\frac{2}{[\sqrt{2}]},\ a_3=\frac{3}{[\sqrt{3}]},\ \cdots,\ a_n=\frac{n}{[\sqrt{n}]},\ \cdots$としたとき,$1$から$99$までの数$n$のうち$a_n$が整数になるものは$[$70$][$71$]$個である.また,$a_n=10$と最初になるのは$n=[$72$][$73$]$のときである.さらに,$\displaystyle S_n=\sum_{i=1}^n a_i$としたとき,$S_{99}=[$74$][$75$][$76$]$である.
(2)数列$\displaystyle b_1=\frac{1}{[\sqrt[3]{1}]},\ b_2=\frac{2}{[\sqrt[3]{2}]},\ b_3=\frac{3}{[\sqrt[3]{3}]},\ \cdots,\ b_n=\frac{n}{[\sqrt[3]{n}]},\ \cdots$としたとき,$1$から$124$までの数$n$のうち$b_n$が整数になるものは$[$77$][$78$]$個である.また,$b_n=10$と最初になるのは$n=[$79$][$80$]$のときである.さらに,$\displaystyle T_n=\sum_{i=1}^n b_i$としたとき,$T_{124}=\kakkofour{$81$}{$82$}{$83$}{$84$}$である.
東京薬科大学 私立 東京薬科大学 2016年 第4問
$2$つの動点$\mathrm{A}$,$\mathrm{B}$は,一辺の長さが$1$の立方体の辺上を,毎秒$1$の速さで,次の規則にしたがって移動する.


\mon[$\lbrack$規則$1 \rbrack$] 最初は同じ頂点にあり,同時に移動を開始する.
\mon[$\lbrack$規則$2 \rbrack$] どの頂点からも,$1$秒で移動可能な$3$つの頂点のいずれかに確率$\displaystyle \frac{1}{3}$で移動する.

自然数$n$について,移動を開始してから$n$秒後における$2$点$\mathrm{A}$,$\mathrm{B}$間の距離が$\sqrt{2}$となる確率を$P_n$とする.以下の問に答えよ.


(1)$\displaystyle P_1=\frac{[ヘ]}{[ホ]},\ P_2=\frac{[マミ]}{[ムメ]}$である.

(2)$P_n$と$P_{n+1}$の関係は
\[ P_{n+1}=\frac{[モ]}{[ヤ]} P_n+\frac{[ユ]}{[ヨ]} \quad (n=1,\ 2,\ \cdots) \]
である.
(3)$\displaystyle P_n=\frac{[ラ]}{[リ]} \left( 1-\frac{[ル]}{{[レ]}^n} \right) (n=1,\ 2,\ \cdots)$である.
名古屋市立大学 公立 名古屋市立大学 2016年 第3問
$\mathrm{A}$,$\mathrm{B}$の$2$人で交互にボールを的に向かって投げるゲームを行う.先にボールを的に当てた方を勝ちとしゲームを終了する.$\mathrm{A}$がボールを$1$回投げて的に当たる確率は$p$,$\mathrm{B}$がボールを$1$回投げて的に当たる確率は$q$である.ただし,$0<p<1$,$0<q<1$である.$\mathrm{A}$を先攻とし,$\mathrm{A}$の最初の投球を$1$回目,次の$\mathrm{B}$の投球を$2$回目,$\cdots$と数える.次の問いに答えよ.

(1)$n$回目の投球で$\mathrm{A}$がゲームに勝つ確率を求めよ.
(2)$\mathrm{A}$がゲームに勝つ確率を求めよ.
(3)$\mathrm{B}$がゲームに勝つ確率が,$\mathrm{A}$が勝つ確率より高くなるときの$p,\ q$の条件を求めよ.また,その条件を満たす$(p,\ q)$の領域を横軸$p$,縦軸$q$の座標平面に図示せよ.
スポンサーリンク

「最初」とは・・・

 まだこのタグの説明は執筆されていません。