タグ「接線」の検索結果

5ページ目:全994問中41問~50問を表示)
愛媛大学 国立 愛媛大学 2016年 第2問
放物線$C:y=x^2+2ax+b$について次の問いに答えよ.ただし,$a,\ b$は実数とする.

(1)放物線$C$上の点$(t,\ t^2+2at+b)$を通る接線の方程式を求めよ.
(2)平面上の点$\mathrm{P}(p,\ q)$から$C$に相異なる$2$本の接線$\ell_1,\ \ell_2$が引けるとする.

(i) $p,\ q$は$q<p^2+2ap+b$を満たすことを示せ.
(ii) $\ell_1$と$\ell_2$が直交するとき,$q$を$a$と$b$を用いて表せ.
愛媛大学 国立 愛媛大学 2016年 第2問
放物線$C:y=x^2+2ax+b$について次の問いに答えよ.ただし,$a,\ b$は実数とする.

(1)放物線$C$上の点$(t,\ t^2+2at+b)$を通る接線の方程式を求めよ.
(2)平面上の点$\mathrm{P}(p,\ q)$から$C$に相異なる$2$本の接線$\ell_1,\ \ell_2$が引けるとする.

(i) $p,\ q$は$q<p^2+2ap+b$を満たすことを示せ.
(ii) $\ell_1$と$\ell_2$が直交するとき,$q$を$a$と$b$を用いて表せ.
宇都宮大学 国立 宇都宮大学 2016年 第5問
座標平面上の曲線$\displaystyle C:y=\sin \pi x \left( 0<x<\frac{1}{2} \right)$の上に点$\mathrm{P}(a,\ \sin \pi a)$をとる.点$\mathrm{P}$における$C$の接線と法線をそれぞれ$\ell$,$m$とする.$\ell$と$y$軸の交点を$\mathrm{Q}(0,\ q)$,$m$と$x$軸の交点を$\mathrm{R}(r,\ 0)$とし,点$\mathrm{P}$から$y$軸に下ろした垂線の足を$\mathrm{H}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求め,$q$を$a$を用いて表せ.
(2)法線$m$の方程式を求め,$r$を$a$を用いて表せ.
(3)曲線$C$,直線$m$,および$x$軸によって囲まれる部分の面積を$S(a)$とする.$S(a)$を$a$を用いて表せ.
(4)$\triangle \mathrm{PQH}$の面積を$T(a)$とする.極限値$\displaystyle \lim_{a \to 0} \frac{S(a)}{T(a)}$を求めよ.
旭川医科大学 国立 旭川医科大学 2016年 第3問
$a$を正の実数とする.点$\mathrm{P}$は曲線$C_a:y=e^{ax}$上を,点$\mathrm{Q}$は直線$y=x$をそれぞれ動く.このとき,次の問いに答えよ.

(1)曲線$C_a$と直線$y=x$が共有点をもたないような$a$の値の範囲を求めよ.
(2)$(1)$で求めた範囲にある$a$に対して,線分$\mathrm{PQ}$の長さの最小値を$d(a)$とする.$\mathrm{PQ}$の長さが$d(a)$となる曲線$C_a$上の点を$\mathrm{P}_a$とする.

(i) $d(a)$を求めよ.
(ii) 点$\mathrm{P}_a$における曲線$C_a$の接線の傾きを求めよ.
(iii) $a$が$(1)$で求めた範囲を動くときの点$\mathrm{P}_a$の軌跡を求め,その概形を図示せよ.

(3)$d(a)$の最大値と,そのときの$a$の値を求めよ.
帯広畜産大学 国立 帯広畜産大学 2016年 第1問
原点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円$C$上に点$\mathrm{P}$をとり,点$\mathrm{P}$における円$C$の接線$L$の方程式を$y=ax+b$とする.接線$L$は,$x$軸と点$\mathrm{A}$で,$y$軸と点$\mathrm{B}$で交わり,$\triangle \mathrm{AOB}$の面積を$S$とする.また,$x$軸の正の向きを始線とし,それと直線$\mathrm{OP}$のなす正の角を$\theta$で表す.ただし,
\[ a>0,\quad b>0 \quad \cdots\cdots \quad (*) \]
とする.次の各問に答えなさい.

(1)$(ⅰ)$ 直線$\mathrm{OP}$の傾きを$a$を用いて表しなさい.
$(ⅱ)$ $a,\ b$を$\sin \theta$を用いて表しなさい.
$(ⅲ)$ $S$を$\sin 2\theta$を用いて表しなさい.
(2)$\displaystyle \theta=\frac{2 \pi}{3}$とする.
$(ⅰ)$ $a,\ b,\ S$の値をそれぞれ求めなさい.
$(ⅱ)$ 点$\mathrm{A}$と点$\mathrm{B}$の座標を求めなさい.
$(ⅲ)$ $\tan 2\theta$の値を求めなさい.
(3)$\theta<2\pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$と$S$のそれぞれの値を求めなさい.
(4)$\theta<200 \pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$がとりうるすべての値の和を$\pi$を用いて表しなさい.
帯広畜産大学 国立 帯広畜産大学 2016年 第2問
関数$f(x)=x^2-4x+5$を用いて,放物線$C:y=f(x)$が定義されている.放物線$C$上の点$\mathrm{P}$の$x$座標を$t$とし,原点$\mathrm{O}(0,\ 0)$と$x$軸上の点$\mathrm{Q}(t,\ 0)$を考える.ただし,$t>0$とする.次の各問に答えなさい.

(1)線分$\mathrm{OQ}$と線分$\mathrm{PQ}$の長さの和を$t$の関数として$L(t)$で表す.

(i) $L(t)$を$t$の式で表しなさい.
(ii) $L(t)$が最小値をとるとき,$t$と$L(t)$の値をそれぞれ求めなさい.

(2)放物線$C$の頂点を$\mathrm{A}$とする.

(i) 点$\mathrm{A}$の座標を求めなさい.
(ii) 直線$\mathrm{OP}$が点$\mathrm{A}$を通るとき,直線$\mathrm{OP}$と放物線$C$で囲まれた部分の面積を求めなさい.
(iii) 直線$\mathrm{OP}$が放物線$C$の接線となるとき,$t$の値と直線$\mathrm{OP}$の方程式を求めなさい.

(3)$\triangle \mathrm{OPQ}$の面積を$t$の関数として$S_1(t)$で表す.また,直線$\mathrm{OP}$と放物線$C$および$y$軸で囲まれた部分の面積を$t$の関数として$S_2(t)$で表す.ただし,$0<t \leqq 2$とする.

(i) $S_1(t)$を$t$の式で表しなさい.また,関数$S_1(t)$の導関数$S_1^\prime(t)$を求めなさい.
(ii) $S_1(t)$の極大点と極小点をそれぞれ求めなさい.
(iii) $S_2(t)$の最大値を求めなさい.
茨城大学 国立 茨城大学 2016年 第1問
$a$を定数とし,関数$f(x)=(x-a)e^{\frac{x^2}{2}}$で表される曲線$y=f(x)$を$C$とする.ただし,$e$は自然対数の底とする.以下の各問に答えよ.

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$f(x)$が極値を持たないために$a$が満たすべき条件を求めよ.
(3)曲線$C$上の点$(t,\ f(t))$における接線の方程式を求めよ.
(4)$(3)$で求めた接線が原点を通るような$t$の値を考える.すべての実数の中で,そのような$t$の値が$3$つあるために$a$が満たすべき条件を求めよ.
茨城大学 国立 茨城大学 2016年 第1問
以下の各問に答えよ.ただし,対数は自然対数であり,$e$は自然対数の底である.

(1)曲線$\displaystyle C:y=\frac{e^x+e^{-x}}{2}$について,傾きが$1$である接線を$\ell$とする.$C$と$\ell$との接点の座標を求めよ.

(2)実数$\alpha,\ \beta$が$0<\alpha<\beta<1$を満たすとき,$2$つの実数$\displaystyle \frac{e^\alpha-\alpha}{\alpha}$と$\displaystyle \frac{e^\beta-\beta}{\beta}$の大小関係を不等号を用いて表せ.

(3)定積分$\displaystyle \int_0^{e-1} x \log (x+1) \, dx$を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2016年 第2問
$xy$平面上で原点$\mathrm{O}$を中心とする半径$r$の円周上の点$\mathrm{P}$について,以下の問いに答えよ.なお,点$\mathrm{A}$の座標を$(r,\ 0)$,$\angle \mathrm{AOP}$の値を$\theta$とする.
(図は省略)

(1)点$\mathrm{P}$の座標を求めよ.
(2)点$\mathrm{P}$を通り,この円に接する接線$\ell$の方程式を求めよ.
(3)接線$\ell$上の点$\mathrm{R}$と点$\mathrm{Q}(-r,\ 0)$を結んだ線分の長さが最小になるときの点$\mathrm{R}$の座標を求めよ.ただし,点$\mathrm{P}$は点$\mathrm{Q}$と異なるものとする.
(4)接線$\ell$に関して,点$\mathrm{Q}$と対称な点$\mathrm{S}$の座標を求めよ.ただし,点$\mathrm{P}$は点$\mathrm{Q}$と異なるものとする.
(5)$r=1$,$\displaystyle \theta=\frac{\pi}{3}$のとき,接線$\ell$に関して,直線$y=0$と対称な直線の方程式を求めよ.
長崎大学 国立 長崎大学 2016年 第4問
関数$f(x)=xe^x$で定まる曲線$C:y=f(x)$を考える.$p$を正の数とする.以下の問いに答えよ.

(1)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.また,すべての$x$について
\[ \{ (ax+b)e^x \}^\prime=f(x) \]
が成り立つような定数$a,\ b$の値を求めよ.
(2)曲線$C$上の点$\mathrm{P}(p,\ f(p))$における$C$の接線を$\ell:y=c(x-p)+d$とする.$c$と$d$の値を$p$を用いて表せ.さらに,区間$x \geqq 0$において関数$g(x)=f(x)-\{ c(x-p)+d \}$の増減を調べ,不等式
\[ f(x) \geqq c(x-p)+d \quad (x \geqq 0) \]
が成り立つことを示せ.
(3)$x \geqq 0$の範囲で,曲線$C$と接線$\ell$,および$y$軸で囲まれた図形を$F$とする.その面積$S(p)$を求めよ.
(4)$2$辺が$x$軸,$y$軸に平行な長方形$R$を考える.$R$が図形$F$を囲んでいるとき,$R$の面積の最小値$T(p)$を求めよ.さらに,$\displaystyle \lim_{p \to \infty} \frac{S(p)}{T(p)}$を求めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。