タグ「接点」の検索結果

1ページ目:全243問中1問~10問を表示)
三重大学 国立 三重大学 2016年 第5問
$a$を正の実数とし,曲線$y=x^3$を$C_1$,曲線$\displaystyle y=\frac{9}{8}ax^2$を$C_2$とする.また,$C_1$と$C_2$の共通接線で$C_1$と$2$点を共有するものを$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)$C_1$と$\ell$が囲む図形の面積$S$を求めよ.
(3)$C_2$と$\ell$の接点の$x$座標$p$を求めよ.さらに$\displaystyle I=\int_0^p \left( \frac{9}{8}ax^2-x^3 \right) \, dx$とするとき,比$S:I$を最も簡単な整数比で表せ.
東京工業大学 国立 東京工業大学 2016年 第3問
水平な平面$\alpha$の上に半径$r_1$の球$S_1$と半径$r_2$の球$S_2$が乗っており,$S_1$と$S_2$は外接している.

(1)$S_1,\ S_2$が$\alpha$と接する点をそれぞれ$\mathrm{P}_1$,$\mathrm{P}_2$とする.線分$\mathrm{P}_1 \mathrm{P}_2$の長さを求めよ.
(2)$\alpha$の上に乗っており,$S_1$と$S_2$の両方に外接している球すべてを考える.それらの球と$\alpha$の接点は,$1$つの円の上または$1$つの直線の上にあることを示せ.
岩手大学 国立 岩手大学 2016年 第5問
$a$を定数とし,曲線$y=e^x-a(x-2)$を$C$とする.曲線$C$と$x$軸が接しているとき,次の問いに答えよ.

(1)曲線$C$と$x$軸の接点の$x$座標,および定数$a$の値を求めよ.
(2)曲線$C$と$x$軸および$y$軸で囲まれた部分を$x$軸の周りに$1$回転してできる回転体の体積を求めよ.
九州工業大学 国立 九州工業大学 2016年 第1問
座標平面上の曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と点$\mathrm{P}(s,\ t) (s>0,\ t>0,\ st<1)$を考える.また,$u=st$とする.点$\mathrm{P}$を通る曲線$C$の$2$本の接線をそれぞれ$\ell_1,\ \ell_2$とし,これらの接線と曲線$C$との接点をそれぞれ$\displaystyle \mathrm{A} \left( a,\ \frac{1}{a} \right)$,$\displaystyle \mathrm{B} \left( b,\ \frac{1}{b} \right)$とする.ただし,$a<b$とする.以下の問いに答えよ.

(1)$a,\ b$を$s,\ t$を用いて表せ.
(2)$2$点$\mathrm{E}(a,\ 0)$,$\mathrm{F}(b,\ 0)$を考える.台形$\mathrm{ABFE}$の面積を$u$を用いて表せ.
(3)$\triangle \mathrm{PAB}$の面積を$u$を用いて表せ.
(4)$(3)$で求めた$\triangle \mathrm{PAB}$の面積を$S(u)$とする.$S(u)$は区間$0<u<1$で減少することを示せ.
(5)点$\mathrm{P}$が$2$点$(3,\ 0)$,$(0,\ 1)$を結ぶ線分上の端点以外にあるものとする.このとき,$\triangle \mathrm{PAB}$の面積が最小となる点$\mathrm{P}$の座標を求めよ.また,そのときの面積を求めよ.
小樽商科大学 国立 小樽商科大学 2016年 第4問
曲線$\displaystyle y=-x^2+\frac{3}{2}$上の点$\mathrm{P}(x,\ y) (y \geqq 0)$から原点$\mathrm{O}$が中心で半径が$1$である円に$2$本の接線を引き,それらの接点を$\mathrm{A}$,$\mathrm{B}$とする.四角形$\mathrm{PAOB}$の面積の最大値$M$,最小値$m$とそれらを与える点$\mathrm{P}$の座標をそれぞれ求めよ.
弘前大学 国立 弘前大学 2016年 第3問
半円$C_1:x^2+y^2=3,\ y>0$と放物線$C_2:y=ax^2$を考える.点$(2,\ 0)$を通り,$C_1$と接する直線を$\ell$とし,$C_1$と$\ell$の接点を$\mathrm{T}$とする.

(1)$\ell$の方程式を求めよ.
(2)$C_2$が点$\mathrm{T}$を通るときの$a$の値を求めよ.
(3)$(2)$で求めた$a$に対して,$C_2$と$\ell$で囲まれた部分の面積を$S_1$とし,$C_1$と$C_2$で囲まれた部分の面積を$S_2$とする.$S_1-S_2$を求めよ.
香川大学 国立 香川大学 2016年 第4問
座標平面上の放物線$\displaystyle C:y=\frac{1}{2}x^2$に対し,次の問に答えよ.

(1)半径$r$の円が放物線$C$と$2$点で接するとき,円の中心と$2$つの接点の座標を$r$を用いて表せ.
(2)点$(0,\ 1)$を中心とする半径$1$の円を$C_1$とする.$n=2,\ 3,\ 4,\ \cdots$に対し円$C_n$を,放物線$C$と$2$点で接し,円$C_{n-1}$と外接するものとする.このとき,円$C_n$の半径を$n$を用いて表せ.
香川大学 国立 香川大学 2016年 第4問
座標平面上の放物線$\displaystyle C:y=\frac{1}{2}x^2$に対し,次の問に答えよ.

(1)半径$r$の円が放物線$C$と$2$点で接するとき,円の中心と$2$つの接点の座標を$r$を用いて表せ.
(2)点$(0,\ 1)$を中心とする半径$1$の円を$C_1$とする.$n=2,\ 3,\ 4,\ \cdots$に対し円$C_n$を,放物線$C$と$2$点で接し,円$C_{n-1}$と外接するものとする.このとき,円$C_n$の半径を$n$を用いて表せ.
旭川医科大学 国立 旭川医科大学 2016年 第2問
原点$\mathrm{O}$を中心とする単位円周上に$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$,および$y>0$を満たす動点$\mathrm{C}(x,\ y)$がある.$\angle \mathrm{BAC}=\theta$とするとき,次の問いに答えよ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.

(1)$\triangle \mathrm{ABC}$の面積を$\theta$を用いて表せ.
(2)$\triangle \mathrm{ABC}$の内接円$\mathrm{O}_1$の半径$r_1$を$\theta$を用いて表せ.
(3)$x$軸,辺$\mathrm{AC}$の延長線,および辺$\mathrm{BC}$とそれぞれ接する円$\mathrm{O}_2$を考える.$x$軸上の接点を$\mathrm{D}$,辺$\mathrm{AC}$の$\mathrm{C}$側の延長上の接点を$\mathrm{E}$,そして辺$\mathrm{BC}$上の接点を$\mathrm{F}$とする.

(i) $\mathrm{AD}$の長さを$\theta$を用いて表せ.
(ii) 円$\mathrm{O}_2$の半径$r_2$を$\theta$を用いて表せ.
(iii) 円$\mathrm{O}_1$の中心を$\mathrm{I}$,円$\mathrm{O}_2$の中心を$\mathrm{J}$とする.$\displaystyle \frac{r_2}{r_1}=2$となるとき,$\triangle \mathrm{OIJ}$の面積を求めよ.
茨城大学 国立 茨城大学 2016年 第1問
以下の各問に答えよ.ただし,対数は自然対数であり,$e$は自然対数の底である.

(1)曲線$\displaystyle C:y=\frac{e^x+e^{-x}}{2}$について,傾きが$1$である接線を$\ell$とする.$C$と$\ell$との接点の座標を求めよ.

(2)実数$\alpha,\ \beta$が$0<\alpha<\beta<1$を満たすとき,$2$つの実数$\displaystyle \frac{e^\alpha-\alpha}{\alpha}$と$\displaystyle \frac{e^\beta-\beta}{\beta}$の大小関係を不等号を用いて表せ.

(3)定積分$\displaystyle \int_0^{e-1} x \log (x+1) \, dx$を求めよ.
スポンサーリンク

「接点」とは・・・

 まだこのタグの説明は執筆されていません。