タグ「恒等式」の検索結果

1ページ目:全28問中1問~10問を表示)
大阪工業大学 私立 大阪工業大学 2016年 第3問
関数$\displaystyle f(x)=\frac{\log x}{(x+e)^2}$について,次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$\displaystyle \frac{e}{x(x+e)}=\frac{A}{x}+\frac{B}{x+e}$が,$x$についての恒等式となるような定数$A,\ B$の値を求めよ.
(2)不定積分$\displaystyle \int \frac{1}{x(x+e)} \, dx$を求めよ.
(3)部分積分法を用いて,定積分$\displaystyle \int_1^{e^2} f(x) \, dx$を求めよ.
玉川大学 私立 玉川大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$\displaystyle \int_0^2 |x^2-3x+2| \, dx=[ア]$.

(2)$\displaystyle \left( x^2-\frac{1}{2x} \right)^5$の$x$の項の係数は$\displaystyle \frac{[イウ]}{[エ]}$で,$x^7$の項の係数は$\displaystyle \frac{[オカ]}{[キ]}$である.

(3)$\displaystyle \frac{x^2+2x+2}{(x-1)(x^2-x+1)}=\frac{A}{x-1}+\frac{Bx+C}{x^2-x+1}$は$x$について恒等式である.このとき,$A$,$B$,$C$は,
\[ A=[ク],\quad B=[ケコ],\quad C=[サ] \]
である.
(4)方程式$x(x+1)(x+2)=60$の解は,$x=[シ],\ [スセ] \pm \sqrt{[ソタ]}i$である.
(5)$\displaystyle -1,\ \frac{3}{2},\ -1+i,\ -1-i$が$4$次方程式$x^4+ax^3+bx^2+cx+d=0$の解であるとき,
\[ a=\frac{[チ]}{[ツ]},\quad b=\frac{[テト]}{[ナ]},\quad c=[ニヌ],\quad d=[ネノ] \]
である.
(6)関数$y=4^x-2^{x+1}+3 (-1 \leqq x \leqq 2)$は,$x=[ハ]$のとき,最大値$[ヒフ]$をとり,$x=[ヘ]$のとき,最小値$[ホ]$をとる.
(7)$f^\prime(a)$が存在するとき,


$\displaystyle \lim_{h \to 0} \frac{f(a+h)-f(a-h)}{h}=[マ]f^\prime(a),$

$\displaystyle \lim_{h \to 0} \frac{f(a+3h)-f(a+h)}{h}=[ミ]f^\prime(a)$


が成り立つ.
会津大学 公立 会津大学 2016年 第3問
関数$\displaystyle y=\frac{1-x^2}{1+x^2}$のグラフと$x$軸によって囲まれた部分を$A$とする.このとき,以下の空欄をうめよ.

(1)等式$\displaystyle \frac{1-x^2}{1+x^2}=a+\frac{b}{1+x^2}$が,$x$についての恒等式となるように定数$a,\ b$を定めると,$a=[イ]$,$b=[ロ]$である.
(2)$A$の面積は$[ハ]$である.
(3)$A$を$y$軸のまわりに$1$回転してできる立体の体積は$[ニ]$である.
信州大学 国立 信州大学 2015年 第4問
次の問いに答えよ.

(1)$\displaystyle a_n=\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx \, dx (n=1,\ 2,\ 3,\ \cdots)$とおくと,無限級数$\displaystyle \sum_{n=1}^\infty a_n^2$は収束し,その和は$\displaystyle \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \, dx$であることが知られている.これを用いて,無限級数$\displaystyle \sum_{n=1}^\infty \frac{1}{n^2}$の和を求めよ.
(2)等式$\displaystyle \frac{1}{x^2(x+1)}=\frac{a}{x}+\frac{b}{x^2}+\frac{c}{x+1}$が$x$についての恒等式となるように,定数$a,\ b,\ c$の値を定めよ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty \frac{1}{n^2(n+1)}$の収束,発散について調べ,収束するときはその和を求めよ.
岡山理科大学 私立 岡山理科大学 2015年 第1問
次の問いに答えよ.

(1)不等式$|3-2x|<1$を解け.
(2)次の等式が$x$についての恒等式となるように,定数$a,\ b$の値を定めよ.
\[ \frac{2x-18}{(x+3)(x-5)}=\frac{a}{x+3}+\frac{b}{x-5} \]
(3)和$\displaystyle \sum_{k=1}^n 2k(3k-1)$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
次の$[ ]$にあてはまる最も適当な数または式を解答欄に記入しなさい.

(1)多項式$f(x)=5x^3-12x^2+8x+1$を$x-1$で割ったときの商$g(x)$は$g(x)=[ケ]$であり,余りは$[コ]$である.また,$g(x)$を$x-1$で割ったときの余りは$[サ]$である.
さらに,定数$[コ]$,$[サ]$,$[シ]$,$[ス]$を用いると,$x$についての恒等式
\[ \frac{f(x)}{(x-1)^4}=\frac{[コ]}{(x-1)^4}+\frac{[サ]}{(x-1)^3}+\frac{[シ]}{(x-1)^2}+\frac{[ス]}{x-1} \]
が成り立つ.
(2)点$\mathrm{O}$を中心とする半径$1$の円周上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が
\[ 5 \overrightarrow{\mathrm{OA}}+6 \overrightarrow{\mathrm{OB}}=-7 \overrightarrow{\mathrm{OC}} \]
を満たすとする.このとき$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=[セ]$であり,$|\overrightarrow{\mathrm{AB}}|=[ソ]$である.また$\angle \mathrm{ACB}$の大きさを$\theta ({0}^\circ \leqq \theta \leqq {180}^\circ)$とすると$\sin \theta=[タ]$である.
埼玉工業大学 私立 埼玉工業大学 2015年 第1問
次の$[ ]$にあてはまるものを入れよ.

(1)$\displaystyle \sin \theta+\cos \theta=\frac{\sqrt{5}}{2}$のとき,
\[ \sin \theta \cos \theta=\frac{[ア]}{[イ]}, \tan \theta+\frac{1}{\tan \theta}=[ウ], \sin^4 \theta+\cos^4 \theta=\frac{[エオ]}{[カキ]} \]
である.
(2)恒等式
\[ \frac{3}{(2x-1)(x+1)}=\frac{a}{2x-1}+\frac{b}{x+1} \]
が成り立つなら$a=[ク],\ b=[ケコ]$である.
(3)$xy$平面上の原点に中心を持つ,半径$3$の円に,点$\mathrm{P}(5,\ 0)$から接線を引いた.このとき,接点は$2$つあり,それらの$x$座標は$\displaystyle \frac{[サ]}{[シ]}$である.また,接線の傾きは$\displaystyle \pm \frac{[ス]}{[セ]}$である.
(4)第$n$項が
\[ \frac{4}{n-\sqrt{4n+n^2}} \]
で表される数列の極限値は$[ソタ]$である.
富山大学 国立 富山大学 2014年 第3問
実数$a,\ b,\ c (b \neq 0)$に対して,次の問いに答えよ.

(1)$2$次方程式$x^2-(a+c)x+ac-b^2=0$は異なる$2$つの実数解をもつことを示せ.
(2)$(1)$の$2$つの実数解を$\alpha,\ \beta (\alpha<\beta)$とする.$x$についての恒等式
\[ (x+p)(x-\alpha)-(x+q)(x-\beta)=1 \]
が成り立つとき,定数$p,\ q$を$\alpha,\ \beta$を用いて表せ.
(3)$2$次の正方行列$A=\left( \begin{array}{cc}
a & b \\
b & c
\end{array} \right)$と$(2)$の$\alpha,\ p$に対して,$B=(A+pE)(A-\alpha E)$とおく.このとき,$B^2=B$であることを示せ.ただし,$E$は$2$次の単位行列である.
千葉工業大学 私立 千葉工業大学 2014年 第1問
次の各問に答えよ.

(1)$\displaystyle x<\frac{\sqrt{3}}{1-\sqrt{3}}$をみたす最大の整数$x$は$[アイ]$である.
(2)等式$\displaystyle \frac{x+5}{x^2+x-2}=\frac{a}{x-1}+\frac{b}{x+2}$が$x$についての恒等式であるとき,$a=[ウ]$,$b=[エオ]$である.
(3)点$(-4,\ a)$と直線$3x+4y-1=0$との距離が$1$であるとき,$a=[カ]$または$\displaystyle \frac{[キ]}{[ク]}$である.
(4)$\displaystyle \left( x-\frac{2}{3} \right)^9$の展開式において,$x^8$の係数は$[ケコ]$であり,$x^7$の係数は$[サシ]$である.
(5)$\overrightarrow{a}=(3,\ t+1,\ 1)$と$\displaystyle \overrightarrow{b}=\left( 2,\ -3,\ \frac{3}{2}t \right)$が垂直であるとき,$t=[ス]$である.
(6)$\displaystyle (5^{\frac{1}{3}}-5^{-\frac{1}{3}})(5^{\frac{2}{3}}+1+5^{-\frac{2}{3}})=\frac{[セソ]}{[タ]}$である.
(7)$\log_{10}2=p$とおくと,$\log_{10}5=[チ]-p$であり,$\displaystyle \log_4 500=\frac{[ツ]-p}{[テ]p}$である.
(8)$\displaystyle \int_{-1}^2 (-x^2+3 |x|) \, dx=\frac{[ト]}{[ナ]}$である.
広島修道大学 私立 広島修道大学 2014年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$1$次不等式$\displaystyle \frac{7+4x}{3} \geqq \frac{x+1}{2}-x$の解は$[$1$]$である.
(2)$\displaystyle \frac{1}{2+\sqrt{3}-\sqrt{5}}$の分母を有理化すると$[$2$]$となる.
(3)$A,\ B,\ C$を定数とする.$\displaystyle \frac{x^2+2x+17}{x^3-x^2-5x-3}=\frac{A}{(x+1)^2}+\frac{B}{x+1}+\frac{C}{x-3}$が$x$についての恒等式であるとき,$A=[$3$]$,$B=[$4$]$,$C=[$5$]$である.
(4)実数$a$に対して,$a$以下の整数で最大のものを$[a]$で表す.このとき,$[\log_2 7]=[$6$]$,$\displaystyle [\log_3 \frac{1}{25}]=[$7$]$である.
(5)大小$2$個のさいころを同時に投げる.このとき,目の和が$9$以下になる確率は$[$8$]$であり,目の積が$9$以下になる確率は$[$9$]$である.
(6)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{BC}=6$,$\mathrm{CA}=5$とし,頂点$\mathrm{A}$から辺$\mathrm{BC}$に垂線$\mathrm{AH}$を下ろすとする.このとき,線分$\mathrm{AH}$の長さは$[$10$]$であり,$\triangle \mathrm{ABC}$の面積は$[$11$]$である.
スポンサーリンク

「恒等式」とは・・・

 まだこのタグの説明は執筆されていません。