タグ「分数」の検索結果

35ページ目:全4648問中341問~350問を表示)
山口東京理科大学 私立 山口東京理科大学 2016年 第1問
次の数値の整数部分と小数部分をそれぞれ$x,\ y$とする.
\[ \frac{1}{5-\sqrt{23}} \]
このとき次の等式が成り立つ.

$x=[ア],$

$y=\frac{\sqrt{[イ][ウ]}-[エ]}{[オ]},$

$4x^2+3xy+4y^2=[カ][キ]$
山口東京理科大学 私立 山口東京理科大学 2016年 第2問
ある製品を工場$\mathrm{A}$および工場$\mathrm{B}$で製造している.工場$\mathrm{A}$の製品には$4 \, \%$,工場$\mathrm{B}$の製品には$5 \, \%$の不良品がそれぞれ含まれる.工場$\mathrm{A}$と工場$\mathrm{B}$の個数を$5:7$の割合で混ぜた大量の製品の中から$1$個の製品を取り出す.

(1)取り出した製品が不良品である確率は,$\displaystyle \frac{[ク][ケ]}{[コ][サ][シ]}$である.
(2)取り出した製品が不良品であったとき,それが工場$\mathrm{A}$の製品である確率は,$\displaystyle \frac{[ス]}{[セ][ソ]}$である.
山口東京理科大学 私立 山口東京理科大学 2016年 第6問
次の条件によって定められる数列$\{a_n\},\ \{b_n\}$がある.

$a_1=1,\quad b_1=2,$
$a_{n+1}=a_n+4b_n,\quad b_{n+1}=a_n-2b_n$


(1)数列$\{a_n+b_n\},\ \{a_n-4b_n\}$の一般項について,

$a_n+b_n=[ヘ] \cdot {[ホ]}^{n-1},$

$a_n-4b_n=-[マ] {(-[ミ])}^{n-1}$

が成り立つ.
(2)数列$\{a_n\}$の一般項について,
\[ a_n=\frac{[ム][メ] \cdot {[モ]}^{n-1}-[ヤ] \cdot {(-[ユ])}^{n-1}}{[ヨ]} \]
が成り立つ.
(3)数列$\{a_n\}$の漸化式について,
\[ a_{n+2}+[ラ]a_{n+1}-[リ]a_n=0 \]
が成り立つ.
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.関数$f(\theta)=\sin \theta+\sqrt{3} \cos \theta$は最小値$[ア]$を$\theta=[イ]$でとる.関数$\displaystyle g(\theta)=\sqrt{3} f(\theta)-2 \cos \left( \theta+\frac{\pi}{3} \right)$は最小値$[ウ]$を$\theta=[エ]$でとる.
(2)箱から玉を$1$個取り出し,この玉に$1$個の玉を新たに加えた合計$2$個の玉を箱に戻す試行を繰り返す.新たに加える玉の色は白あるいは黒のみとする.最初に,$2$個の白玉と$3$個の黒玉が入っている箱を考える.新たに加える玉の色は取り出した玉と同色とすると,$3$回目の試行において白玉を取り出す確率は$[オ]$,$n$回目の試行において白玉を取り出す確率$P_n$は$[カ]$,極限$\displaystyle \lim_{n \to \infty}P_n$は$[キ]$である.次に,$3$個の白玉と$4$個の黒玉が入っている箱を考える.新たに加える玉の色は取り出した玉と異なる色とすると,$3$回目の試行において白玉を取り出す確率は$[ク]$である.$n$回目の試行において白玉を取り出す確率を$Q_n$とすると,$Q_n$は漸化式$\displaystyle Q_n=[ケ]Q_{n-1}+\frac{1}{6+n} (n \geqq 2)$を満たし,極限$\displaystyle \lim_{n \to \infty}Q_n$は$[コ]$である.
同志社大学 私立 同志社大学 2016年 第2問
次の問いに答えよ.

(1)関数$f(u)=\log (\sqrt{u}-1)-\log (\sqrt{u}+1)$の導関数$f^\prime(u)$を求めよ.
(2)関数$F(x)=\log (\sqrt{e^{2x}+1}-1)-\log (\sqrt{e^{2x}+1}+1)$の導関数$F^\prime(x)$を求めよ.
(3)等式$\displaystyle \sqrt{e^{2x}+1}=\frac{e^{2x}}{\sqrt{e^{2x}+1}}+\frac{1}{\sqrt{e^{2x}+1}}$を用いて,不定積分$\displaystyle \int \sqrt{e^{2x}+1} \, dx$を求めよ.
(4)曲線$\displaystyle y=e^x \left( \frac{1}{2} \log 8 \leqq x \leqq \frac{1}{2} \log 24 \right)$の長さを求めよ.
同志社大学 私立 同志社大学 2016年 第4問
$n$を自然数,$k$を$0$以上の整数とする.また,$f(x)=|x \sin (nx)|$,$\displaystyle x_k=\frac{k \pi}{n}$,$\displaystyle \alpha_k=\frac{x_k+x_{k+1}}{2}$とする.次の問いに答えよ.

(1)$\displaystyle T_k=\int_{x_k}^{\alpha_k} f(x) \, dx$とする.$T_k$を$n,\ k$を用いて表し,極限$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n T_k$を求めよ.
(2)$x_k \leqq x \leqq x_{k+1}$の範囲で,関数$f(x)$が最大値をとるときの$x$の値を$\beta_k$とする.$\displaystyle U_k=\int_{x_k}^{\beta_k} f(x) \, dx$とおくと,ある定数$b$を用いて$\displaystyle U_k=\frac{k \pi+b |\sin (n \beta_k)|}{n^2}$と表される.定数$b$の値を求めよ.また,極限$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n U_k$を求めよ.
(3)$x_k \leqq x \leqq \alpha_k$の範囲で,関数$g(x)=|x \cos (nx)|$が最大値をとるときの$x$の値を$\gamma_k$とする.この$\gamma_k$と$(2)$の$\beta_k$に対して,$\displaystyle V_k=\int_{\gamma_k}^{\beta_k} f(x) \, dx$とおく.極限$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n V_k$を求めよ.
日本医科大学 私立 日本医科大学 2016年 第1問
次の各問いに答えよ.

(1)円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=1+\sqrt{3}$,$\mathrm{BC}=\mathrm{CD}$,$\mathrm{DA}=2$,また$\angle \mathrm{DAB}={60}^\circ$である.四角形$\mathrm{ABCD}$の対角線の交点を$\mathrm{P}$,$\angle \mathrm{BCD}$の二等分線と辺$\mathrm{AB}$との交点を$\mathrm{Q}$,$\mathrm{BD}$と$\mathrm{CQ}$の交点を$\mathrm{R}$とするとき,以下の各問いに答えよ.なお数値の分母は有理化すること.

(i) 辺$\mathrm{BD}$の長さを求めよ.
(ii) $\angle \mathrm{ABD}$の大きさを求めよ.
(iii) 辺$\mathrm{BP}$の長さを求めよ.
\mon[$\tokeishi$] 三角形$\mathrm{PQR}$の内接円の半径を求めよ.

(2)自然数$n$に対して,$n$を$3$で割った余りを$a_n$,$n^2$を$3$で割った余りを$b_n$とするとき,以下の各問いに答えよ.

(i) $\displaystyle \sum_{n=1}^{2016} (a_n+b_n)$の値を求めよ.
(ii) $\displaystyle \sum_{n=1}^m (a_{n+2}+b_{n+1}+2a_n)=2016$を満たす自然数$m$の値を求めよ.

(3)$\mathrm{O}$を原点とする座標平面上に,次のような双曲線$C$と直線$\ell_k$($k$は実数の定数)が与えられているとき,以下の各問いに答えよ.
\[ C:\frac{x^2}{4}-\frac{y^2}{3}=-1 \qquad \ell_k:3x-4y+k=0 \]

(i) $C$と$\ell_k$が接するような$k$の値を求めよ.
(ii) $C$上の点と直線$\ell_0:3x-4y=0$の距離の最小値を求めよ.
日本医科大学 私立 日本医科大学 2016年 第2問
次の関数$f(x)$(ただし$x>0$)に関する以下の各問いに答えよ.
\[ f(x)=\int_1^x t(x-t+1)e^{-{(x-t+1)}^2} \, dt \]

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)関数$g(x)$を$\displaystyle g(x)=\frac{1}{2}(e^{-1}-e^{-x^2})$とするとき,$f(x)$と$g(x)$の$x>0$における大小関係を調べよ.
(3)$(2)$の$g(x)$に対して,傾きが$f^\prime(x)-g^\prime(x)$の$x=\sqrt{2}$における値に等しく,点$(1,\ 0)$を通る直線を考えることにより,不等式
\[ 0.115<f(\sqrt{2})<0.165 \]
が成り立つことを示せ.ただし,$0.367<e^{-1}<0.368$,$0.135<e^{-2}<0.136$であることは用いてよい.
南山大学 私立 南山大学 2016年 第2問
$2$つの関数$\displaystyle f(x)=-\frac{1}{2}e^{-x}(\sin x+\cos x)$,$g(x)=e^{-x} \sin x$を考える.

(1)$f(x)$を微分せよ.
(2)定積分
\[ S_1=\int_0^{2\pi} |g(x)| \, dx \]
を求めよ.
(3)$n$を自然数とする.
\[ S_n=\int_{2(n-1) \pi}^{2n \pi} |g(x)| \, dx \]
とするとき,$\displaystyle \frac{S_{n+1}}{S_n}$を求めよ.
(4)無限級数の和
\[ \sum_{n=1}^{\infty} S_n \]
を求めよ.
立教大学 私立 立教大学 2016年 第2問
$a$を正の実数とし,数列$\{a_n\}$を次で定義する.
\[ a_1=a,\quad a_{n+1}=1+\frac{2}{a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の問いに答えよ.

(1)$a_2,\ a_3,\ a_4$をそれぞれ分子と分母が$a$の整式となっている分数式で表せ.
(2)数列$\{b_n\}$を$b_n=(-1)^n a_1 a_2 \cdots a_n$により定めるとき,$b_1,\ b_2,\ b_3,\ b_4$をそれぞれ$a$を用いて表せ.
(3)$b_{n+1}$と$b_n$を用いて$b_{n+2}$を表せ.
(4)数列$\{c_n\}$を$c_n=b_{n+1}-b_n$により定めるとき,$n$と$a$を用いて$c_n$を表せ.
(5)$a=1$のとき,$b_n$を$n$を用いて表せ.また,$a_n$を$n$を用いて表せ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。