タグ「分数」の検索結果

15ページ目:全4648問中141問~150問を表示)
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
東京農工大学 国立 東京農工大学 2016年 第2問
$n$を自然数とし,$a,\ b,\ r$は実数で$b>0$,$r>0$とする.複素数$w=a+bi$は$w^2=-2 \overline{w}$を満たすとする.$\alpha_n=r^{n+1} w^{2-3n} (n=1,\ 2,\ 3,\ \cdots)$とする.ただし,$i$は虚数単位とし,複素数$z$に共役な複素数を$\overline{z}$で表す.次の問いに答えよ.

(1)$a$と$b$の値を求めよ.
(2)複素数平面上の$3$点$\mathrm{O}(0)$,$\mathrm{A}(\alpha_1)$,$\mathrm{B}(\overline{\alpha_1})$について,$\angle \mathrm{AOB}$の大きさを$\theta$とする.ただし,$0 \leqq \theta \leqq \pi$とする.$\theta$の値を求めよ.
(3)$\alpha_n$の実部を$c_n (n=1,\ 2,\ 3,\ \cdots)$とする.$c_n$を$n$と$r$を用いて表せ.
(4)$(3)$で求めた$c_n$を第$n$項とする数列$\{c_n\}$について,無限級数$\displaystyle \sum_{n=1}^\infty c_n$が収束し,その和が$\displaystyle \frac{8}{3}$となるような$r$の値を求めよ.
東京農工大学 国立 東京農工大学 2016年 第3問
$a$を正の実数とし,$x$の関数$f(x)$を
\[ f(x)=e^{-ax} \tan^2 x \quad \left( -\frac{\pi}{3}<x<\frac{\pi}{3} \right) \]
で定める.ただし,$e$は自然対数の底とする.次の問いに答えよ.

(1)$f(x)$の導関数を$f^\prime(x)$とする.$\displaystyle f^\prime \left( \frac{\pi}{4} \right)=0$が成り立つとき,$a$の値を求めよ.
(2)$f^\prime(x)=0$かつ$\displaystyle -\frac{\pi}{3}<x<\frac{\pi}{3}$を満たす$x$がちょうど$3$個存在するように,定数$a$の値の範囲を定めよ.
(3)$a$の値が$(2)$で定めた範囲にあるとする.このとき,方程式$f^\prime(x)=0$の解を$\displaystyle x_1,\ x_2,\ x_3 \left( -\frac{\pi}{3}<x_1<x_2<x_3<\frac{\pi}{3} \right)$とし,
\[ y_1=f(x_1),\quad y_2=f(x_2),\quad y_3=f(x_3) \]
とおく.

(i) $y_1,\ y_2,\ y_3$を大きさの順に並べよ.
(ii) $\tan x_3$を$a$の式で表せ.
東京農工大学 国立 東京農工大学 2016年 第4問
$xy$平面上の$2$つの曲線

$C_1:y=\log x+2 \quad (x>0)$
$C_2:y=-\log x \quad (x>0)$

を考える.正の実数$p,\ q$について,点$\mathrm{P}(p,\ \log p+2)$における$C_1$の接線を$\ell_1$とし,点$\mathrm{Q}(q,\ -\log q)$における$C_2$の接線を$\ell_2$とする.また,$\ell_1$と$\ell_2$は垂直であるとする.ただし,対数は自然対数とする.次の問いに答えよ.

(1)$q$を$p$を用いて表せ.
(2)$\ell_2$の方程式を$p$を用いて表せ.
(3)$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.$\displaystyle \angle \mathrm{RPQ}=\frac{\pi}{3}$であるとき,線分$\mathrm{PQ}$,曲線$C_1$および曲線$C_2$で囲まれた部分の面積$S$を求めよ.
福島大学 国立 福島大学 2016年 第3問
次の問いに答えなさい.

(1)方程式$x^2-2 |x|-3=0$を解きなさい.
(2)次の$2$直線のなす角$\theta$を求めなさい.ただし$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.
\[ y=\frac{\sqrt{3}}{2}x-10,\quad y=-3 \sqrt{3}x+2 \]
(3)次の不等式を解きなさい.
\[ \log_{\sqrt{2}}(x-1) \leqq 1+\log_2 (x+1) \]
(4)$0^\circ \leqq x \leqq {360}^\circ$とするとき$\sin (x+{50}^\circ)+\cos (x+{20}^\circ)$の最大値と,そのときの$x$を求めなさい.
福島大学 国立 福島大学 2016年 第5問
$n$を自然数とし,$a_n=\cos n\theta,\ b_n=\sin n\theta$とする.

(1)$a_{n+1},\ b_{n+1}$を$a_n,\ b_n,\ \cos \theta,\ \sin \theta$を用いて表しなさい.
(2)$a_{n+2}$を$a_{n+1},\ a_n,\ \cos \theta$を用いて表しなさい.
(3)$\displaystyle \cos \theta=\frac{3}{4}$のとき$\cos 5\theta$の値を求めなさい.
熊本大学 国立 熊本大学 2016年 第3問
自然数$a$に対して
\[ S(a)=\sum_{k=1}^a \frac{1}{\sqrt{k+1}+\sqrt{k}} \]
とおく.以下の問いに答えよ.

(1)和$S(a)$を求めよ.
(2)$S(a)$が整数となる自然数$a$を小さい順に並べた数列を
\[ a_1,\ a_2,\ a_3,\ \cdots,\ a_n,\ \cdots \]
とする.一般項$a_n$を求めよ.
(3)$(2)$の数列$\{a_n\}$について,$a_n (n=1,\ 2,\ 3,\ \cdots)$を$4$で割った余りは$0$か$3$であることを示せ.
(4)$(2)$の数列$\{a_n\}$と自然数$N$に対して和$\displaystyle \sum_{n=1}^N \frac{1}{a_n}$を求めよ.
熊本大学 国立 熊本大学 2016年 第4問
$2$次関数$f(x)$に対して
\[ F(x)=\int_0^x f(t) \, dt \]
とおく.$a$を正の数とし,$F(x)$が$x=a$と$x=-a$で極値をとるとき,以下の問いに答えよ.

(1)すべての$x$について$F(-x)=-F(x)$が成り立つことを示せ.
(2)$F(x)+F(a)=0$を満たす$x$をすべて求めよ.

(3)関数$\displaystyle \frac{F(x)}{F^\prime(0)}$の極大値を求めよ.
福島大学 国立 福島大学 2016年 第4問
$\displaystyle F(x)=\int_0^x e^{-pt} \sin t \, dt$($p$は正の定数)とする.このとき,次の問いに答えなさい.

(1)関数$F(x)$を微分しなさい.
(2)関数$y=Ae^{-px} \cos x+Be^{-px} \sin x+C$($A,\ B,\ C$は定数)を微分しなさい.
(3)$F(x)=Ae^{-px} \cos x+Be^{-px} \sin x+C$($A,\ B,\ C$は定数)と表すことができる.このとき,$A,\ B,\ C$の値を求めなさい.
ただし,$F(0)$,$F^\prime(0)$,$\displaystyle F^\prime \left( \frac{\pi}{2} \right)$の値を用いてよい.
(4)$T_n=|F(n\pi)-F((n-1)\pi)| (n=1,\ 2,\ 3,\ \cdots)$とする.このとき,$T_1,\ T_2$の値を求めなさい.
(5)$(4)$の$T_n$に対して$\displaystyle \sum_{n=1}^\infty T_n$を求めなさい.
福島大学 国立 福島大学 2016年 第3問
次の問いに答えなさい.

(1)次の極限を求めなさい.
\[ \lim_{n \to \infty} (\sqrt{(n+1)(n+3)}-\sqrt{n(n+2)}) \]
(2)複素数平面上の$2$点$\alpha=4-2i,\ \beta=3-3i$に対して,次の問いに答えなさい.

(i) 点$\alpha$を点$\beta$の周りに${30}^\circ$回転した点を表す複素数$\gamma$を求めなさい.
(ii) $\beta^6$の値を求めなさい.

(3)三角形$\mathrm{ABC}$があり$\mathrm{AB}=5$,$\mathrm{AC}=3$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{1}{3}$とする.点$\mathrm{A}$から辺$\mathrm{BC}$へ下ろした垂線と辺$\mathrm{BC}$の交点を$\mathrm{H}$とする.

(i) ベクトル$\overrightarrow{\mathrm{AH}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表しなさい.
(ii) 線分$\mathrm{AH}$の長さを求めなさい.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。