タグ「共役な複素数」の検索結果

1ページ目:全17問中1問~10問を表示)
静岡大学 国立 静岡大学 2016年 第4問
$i$を虚数単位とするとき,次の各問に答えよ.

(1)複素数$c=1+i$について,$c$と共役な複素数$\overline{c}$および$|c|^2$をそれぞれ求めよ.
(2)複素数$z$が$|z|=1$を満たすとする.このとき,$\displaystyle z+\frac{1}{z}$が実数であることを証明せよ.
(3)$\alpha,\ \beta$を複素数として$\alpha$の実部と虚部がともに正であるとする.また,$|\alpha|=|\beta|=1$とする.複素数$\displaystyle i \alpha,\ \frac{i}{\alpha},\ \beta$で表される複素数平面上の$3$点が,ある正三角形の$3$頂点であるとき,$\alpha,\ \beta$をそれぞれ求めよ.
静岡大学 国立 静岡大学 2016年 第4問
$\alpha$を絶対値が$1$の複素数とし,等式$z=\alpha^2 \overline{z}$を満たす複素数$z$の表す複素数平面上の図形を$S$とする.ただし,$\overline{z}$は$z$と共役な複素数を表す.このとき,次の各問に答えよ.

(1)$z=\alpha^2 \overline{z}$が成り立つことと,$\displaystyle \frac{z}{\alpha}$が実数であることは同値であることを証明せよ.また,このことを用いて,図形$S$は原点を通る直線であることを示せ.
(2)複素数平面上の点$\mathrm{P}(w)$を直線$S$に関して対称移動した点を$\mathrm{Q}(w^\prime)$とする.このとき,$w^\prime$を$w$と$\alpha$を用いて表せ.
山形大学 国立 山形大学 2016年 第4問
複素数平面上の$3$点$\mathrm{A}(\alpha)$,$\mathrm{W}(w)$,$\mathrm{Z}(z)$は原点$\mathrm{O}(0)$と異なり,
\[ \alpha=-\frac{1}{2}+\frac{\sqrt{3}}{2}i,\quad w=(1+\alpha)z+1+\overline{\alpha} \]
とする.ただし,$\overline{\alpha}$は$\alpha$の共役な複素数とする.$2$直線$\mathrm{OW}$,$\mathrm{OZ}$が垂直であるとき,次の問に答えよ.

(1)$(1+\alpha)\beta+1+\overline{\alpha}=0$を満たす複素数$\beta$を求めよ.
(2)$|z-\alpha|$の値を求めよ.
(3)$\triangle \mathrm{OAZ}$が直角三角形になるときの複素数$z$を求めよ.
東京農工大学 国立 東京農工大学 2016年 第2問
$n$を自然数とし,$a,\ b,\ r$は実数で$b>0$,$r>0$とする.複素数$w=a+bi$は$w^2=-2 \overline{w}$を満たすとする.$\alpha_n=r^{n+1} w^{2-3n} (n=1,\ 2,\ 3,\ \cdots)$とする.ただし,$i$は虚数単位とし,複素数$z$に共役な複素数を$\overline{z}$で表す.次の問いに答えよ.

(1)$a$と$b$の値を求めよ.
(2)複素数平面上の$3$点$\mathrm{O}(0)$,$\mathrm{A}(\alpha_1)$,$\mathrm{B}(\overline{\alpha_1})$について,$\angle \mathrm{AOB}$の大きさを$\theta$とする.ただし,$0 \leqq \theta \leqq \pi$とする.$\theta$の値を求めよ.
(3)$\alpha_n$の実部を$c_n (n=1,\ 2,\ 3,\ \cdots)$とする.$c_n$を$n$と$r$を用いて表せ.
(4)$(3)$で求めた$c_n$を第$n$項とする数列$\{c_n\}$について,無限級数$\displaystyle \sum_{n=1}^\infty c_n$が収束し,その和が$\displaystyle \frac{8}{3}$となるような$r$の値を求めよ.
佐賀大学 国立 佐賀大学 2016年 第3問
$0$でない複素数$z$の極形式を$r(\cos \theta+i \sin \theta)$とするとき,次の複素数を極形式で表せ.ただし,$0 \leqq \theta<2\pi$とし,また$z$と共役な複素数を$\overline{z}$で表す.

(1)$-\overline{z}$

(2)$\displaystyle \frac{1}{z^2}$

(3)$z-|z|$
鹿児島大学 国立 鹿児島大学 2016年 第7問
次の各問いに答えよ.

(1)複素数$z,\ w$について,次の関係が成立することを示せ.ただし複素数$\alpha$に対し,$\overline{\alpha}$は$\alpha$と共役な複素数を表す.

(i) $\overline{z+w}=\overline{z}+\overline{w}$
(ii) $\overline{zw}=\overline{z} \ \overline{w}$

(2)方程式$z^2-z+1=0$の$2$つの解を$\alpha,\ \beta$とする.次の各問いに答えよ.

(i) $\alpha,\ \beta$を求めよ.さらにそれらを極形式で表せ.
(ii) $\alpha^{100}+\beta^{100}$を求めよ.
山口大学 国立 山口大学 2016年 第3問
座標平面上の$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(x_1,\ y_1)$,$\mathrm{B}(x_2,\ y_2)$を頂点とする$\triangle \mathrm{OAB}$を考える.
\[ \alpha=x_1+y_1 i,\quad \beta=x_2+y_2 i \]
とするとき,次の問いに答えなさい.ただし,$i$は虚数単位である.

(1)$\triangle \mathrm{OAB}$の面積$S$は
\[ S=\frac{1}{4} |\alpha \overline{\beta|-\overline{\alpha} \beta} \]
で表されることを示しなさい.ただし,$\overline{\alpha}$,$\overline{\beta}$はそれぞれ$\alpha,\ \beta$と共役な複素数である.
(2)$k$を$2$より大きい定数とする.$\alpha,\ \beta$が
\[ \alpha^2+\beta^2=1 \quad \text{かつ} \quad |\alpha-1|+|\alpha+1|=k \]
を満たすとき,次の各値は$\alpha,\ \beta$によらず一定であることを示しなさい.

(i) $|\alpha|^2+|\beta|^2$
(ii) $\triangle \mathrm{OAB}$の面積$S$
獨協医科大学 私立 獨協医科大学 2016年 第4問
次の問いに答えなさい.ただし,$[チ]$には$[$\mathrm{X]$}$~$[$\mathrm{Z]$}$に入る言葉の組合せとして最も適切なものを,下の選択肢$\nagamaruichi$~$\nagamaruroku$のうちから一つ選びなさい.

複素数$\alpha$を$\alpha=-7+4 \sqrt{3}i$とし,実数の数列$\{a_n\}$と$\{b_n\}$を
\[ a_n+4 \sqrt{3} b_n i=\alpha^n \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.ただし,$i$は虚数単位である.$a_n$と$b_n$を$\alpha$とその共役な複素数$\overline{\alpha}$で表すと
\[ a_n=\frac{\alpha^n+(\overline{\alpha})^n}{[ア]},\quad b_n=\frac{\alpha^n-(\overline{\alpha})^n}{[イ] \sqrt{[ウ]}i} \]
となるので,数列$\{a_n\}$と$\{b_n\}$は漸化式

$a_{n+2}+[エオ]a_{n+1}+[カキ]a_n=0 \quad \cdots\cdots \ ①$
$b_{n+2}+[エオ]b_{n+1}+[カキ]b_n=0 \quad\;\;\!\! \cdots\cdots \ ②$

を満たす.これらを用いて,すべての自然数$n$に対して

$a_n$と$b_n$が互いに素な整数である $\quad \cdots\cdots \ (*)$

ことを,数学的帰納法により証明する.

(i) $n=1,\ 2$のとき
\[ a_1=[クケ],\quad b_1=[コ],\quad a_2=[サ],\quad b_2=[シスセ] \]
であるから,$(*)$が成り立つ.
(ii) $n=k,\ k+1$のとき$(*)$が成り立つと仮定する.
まず$①,\ ②$より,$a_{k+2},\ b_{k+2}$は$[$\mathrm{X]$}$である.ここで
\[ {a_n}^2+48{b_n}^2=[ソタ]^n \quad \cdots\cdots \ ③ \]
がすべての自然数$n$で成り立つ.$[ソタ]$が$[$\mathrm{Y]$}$であるから,$a_{k+2},\ b_{k+2}$が$[$\mathrm{Z]$}$と仮定すると$③$より,これら$2$数は$[ソタ]$の倍数でなければならない.ところが,このとき$①,\ ②$より$a_{k+1},\ b_{k+1}$は$[ソタ]$の倍数となり,数学的帰納法の仮定と矛盾する.よって,$n=k+2$のときも$(*)$が成り立つ.

$(ⅰ),\ (ⅱ)$より,すべての自然数$n$について$(*)$が成り立つ.

$[チ]$の選択肢
\[ \begin{array}{ccccccccc}
& \mathrm{X} & \mathrm{Y} & \mathrm{Z} & & & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\
\nagamaruichi & \text{整数} & \text{素数} & \text{互いに素でない} & & \nagamaruni & \text{整数} & \text{素数} & \text{互いに素である} \\
\nagamarusan & \text{素数} & \text{素数} & \text{互いに素でない} & & \nagamarushi & \text{整数} & \text{整数} & \text{互いに素である} \\
\nagamarugo & \text{素数} & \text{整数} & \text{互いに素でない} & & \nagamaruroku & \text{素数} & \text{整数} & \text{互いに素である}
\end{array} \]
岐阜薬科大学 公立 岐阜薬科大学 2016年 第4問
複素数平面上で原点$\mathrm{O}$と$2$点$\mathrm{A}(\alpha)$,$\mathrm{B}(\beta)$を頂点とする$\triangle \mathrm{OAB}$がある.直線$\mathrm{OB}$に関して点$\mathrm{A}$と対称な点を$\mathrm{C}$,直線$\mathrm{OA}$に関して点$\mathrm{B}$と対称な点を$\mathrm{D}$とするとき,以下の問いに答えよ.ただし,複素数$z$と共役な複素数を$\overline{z}$で表すものとする.

(1)点$\mathrm{C}(\gamma)$とするとき,$\gamma=\overline{\left( \displaystyle\frac{\alpha}{\beta} \right)} \;\beta$であることを示せ.
(2)辺$\mathrm{AB}$と直線$\mathrm{DC}$が平行なとき,$\triangle \mathrm{OAB}$はどのような三角形か.
学習院大学 私立 学習院大学 2015年 第4問
(新課程履修者)$a>0$とする.複素平面上で等式
\[ |z-ia|=\frac{z-\overline{z}}{2i} \]
を満たす点$z$全体の表す図形を$C$とする.ただし,$i$は虚数単位で,$\overline{z}$は$z$と共役な複素数を表す.

(1)$z=x+iy$と表すとき,$C$の方程式を$y=f(x)$の形で表せ.
(2)$C$上の点$z$で
\[ |z-(2+2i)|=|z+(2+2i)| \]
を満たすものを求めよ.
スポンサーリンク

「共役な複素数」とは・・・

 まだこのタグの説明は執筆されていません。