タグ「体積」の検索結果

1ページ目:全290問中1問~10問を表示)
東京大学 国立 東京大学 2016年 第6問
座標空間内を,長さ$2$の線分$\mathrm{AB}$が次の$2$条件$(ⅰ)$,$(ⅱ)$をみたしながら動く.

$(ⅰ)$ 点$\mathrm{A}$は平面$z=0$上にある.
$(ⅱ)$ 点$\mathrm{C}(0,\ 0,\ 1)$が線分$\mathrm{AB}$上にある.

このとき,線分$\mathrm{AB}$が通過することのできる範囲を$K$とする.$K$と不等式$z \geqq 1$の表す範囲との共通部分の体積を求めよ.
広島大学 国立 広島大学 2016年 第1問
座標空間に$4$点
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A}(s,\ s,\ s),\quad \mathrm{B}(-1,\ 1,\ 1),\quad \mathrm{C}(0,\ 0,\ 1) \]
がある.ただし,$s>0$とする.$t,\ u,\ v$を実数とし,
\[ \overrightarrow{d}=\overrightarrow{\mathrm{OB}}-t \overrightarrow{\mathrm{OA}},\quad \overrightarrow{e}=\overrightarrow{\mathrm{OC}}-u \overrightarrow{\mathrm{OA}}-v \overrightarrow{\mathrm{OB}} \]
とおく.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{d}$のとき,$t$を$s$を用いて表せ.
(2)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{d}$,$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{e}$,$\overrightarrow{d} \perp \overrightarrow{e}$のとき,$u,\ v$を$s$を用いて表せ.
(3)$(2)$のとき,$2$点$\mathrm{D}$,$\mathrm{E}$を
\[ \overrightarrow{\mathrm{OD}}=\overrightarrow{d},\quad \overrightarrow{\mathrm{OE}}=\overrightarrow{e} \]
となる点とする.四面体$\mathrm{OADE}$の体積が$2$であるとき,$s$の値を求めよ.
広島大学 国立 広島大学 2016年 第3問
座標空間に$4$点
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A}(s,\ s,\ s),\quad \mathrm{B}(-1,\ 1,\ 1),\quad \mathrm{C}(0,\ 0,\ 1) \]
がある.ただし,$s>0$とする.$t,\ u,\ v$を実数とし,
\[ \overrightarrow{d}=\overrightarrow{\mathrm{OB}}-t \overrightarrow{\mathrm{OA}},\quad \overrightarrow{e}=\overrightarrow{\mathrm{OC}}-u \overrightarrow{\mathrm{OA}}-v \overrightarrow{\mathrm{OB}} \]
とおく.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{d}$のとき,$t$を$s$を用いて表せ.
(2)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{d}$,$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{e}$,$\overrightarrow{d} \perp \overrightarrow{e}$のとき,$u,\ v$を$s$を用いて表せ.
(3)$(2)$のとき,$2$点$\mathrm{D}$,$\mathrm{E}$を
\[ \overrightarrow{\mathrm{OD}}=\overrightarrow{d},\quad \overrightarrow{\mathrm{OE}}=\overrightarrow{e} \]
となる点とする.四面体$\mathrm{OADE}$の体積が$2$であるとき,$s$の値を求めよ.
福島大学 国立 福島大学 2016年 第4問
二つの楕円
\[ x^2+3y^2=4,\quad 3x^2+y^2=4 \]
で囲まれた図形のうち,下の図の網かけ部分として示された,原点を含む部分を$D$とする.
(図は省略)

(1)$D$を$x$軸のまわりに回転してできる図形の体積を求めなさい.
(2)$D$の面積を求めなさい.
金沢大学 国立 金沢大学 2016年 第1問
座標空間内に$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 3,\ 0)$,$\mathrm{B}(0,\ 6,\ 0)$をとり,さらに$1<a<3$を満たす定数$a$に対して点$\mathrm{P}(t,\ ta,\ ta)$をとる.ただし,$t$は$t>0$の範囲を動くものとする.次の問いに答えよ.

(1)点$\mathrm{P}$から$xy$平面に垂線$\mathrm{PH}$を下ろす.点$\mathrm{H}$の座標を求めよ.
(2)点$\mathrm{H}$が線分$\mathrm{AB}$上にあるときの$t$の値を求め,そのときの点$\mathrm{H}$の座標を$a$を用いて表せ.



以下,点$\mathrm{H}$は線分$\mathrm{AB}$上にあるとする.


\mon[$(3)$] 点$\mathrm{M}$を線分$\mathrm{AB}$の中点とする.$\mathrm{AH}:\mathrm{HM}$の比の値$\displaystyle \frac{\mathrm{AH}}{\mathrm{HM}}$を求めよ.
\mon[$(4)$] 四面体$\mathrm{OPMH}$の体積が$2$となるような$a$の値を求めよ.
埼玉大学 国立 埼玉大学 2016年 第4問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,頂点$\mathrm{O}$から$\triangle \mathrm{ABC}$を含む平面に下ろした垂線の足を$\mathrm{H}$とする.また,四面体$\mathrm{OABC}$は
\[ |\overrightarrow{a|}=|\overrightarrow{b|}=|\overrightarrow{c|}=1,\quad \angle \mathrm{AOB}=\angle \mathrm{BOC}=\frac{\pi}{3} \]
を満たすものとし,$\angle \mathrm{AOC}=\theta \left( 0<\theta<\displaystyle\frac{2}{3} \pi \right)$とする.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$を求めよ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$を満たす$s,\ t,\ u$を求めよ.
(4)$|\overrightarrow{\mathrm{OH|}}$を求めよ.
(5)$\displaystyle 0<\theta<\frac{2}{3}\pi$のとき,四面体$\mathrm{OABC}$の体積の最大値を求めよ.
横浜国立大学 国立 横浜国立大学 2016年 第3問
四面体$\mathrm{OABC}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{P}$を$\overrightarrow{\mathrm{OD}}=2 \overrightarrow{b}$,$\overrightarrow{\mathrm{OE}}=3 \overrightarrow{c}$,$\overrightarrow{\mathrm{OP}}=6 \overrightarrow{\mathrm{OG}}$をみたす点とし,平面$\mathrm{ADE}$と直線$\mathrm{OP}$の交点を$\mathrm{Q}$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)三角形$\mathrm{ADE}$の面積を$S_1$,三角形$\mathrm{QDE}$の面積を$S_2$とするとき,$\displaystyle \frac{S_2}{S_1}$を求めよ.
(3)四面体$\mathrm{OADE}$の体積を$V_1$,四面体$\mathrm{PQDE}$の体積を$V_2$とするとき,$\displaystyle \frac{V_2}{V_1}$を求めよ.
横浜国立大学 国立 横浜国立大学 2016年 第3問
四面体$\mathrm{OABC}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{P}$を$\overrightarrow{\mathrm{OD}}=2 \overrightarrow{b}$,$\overrightarrow{\mathrm{OE}}=3 \overrightarrow{c}$,$\overrightarrow{\mathrm{OP}}=6 \overrightarrow{\mathrm{OG}}$をみたす点とし,平面$\mathrm{ADE}$と直線$\mathrm{OP}$の交点を$\mathrm{Q}$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)三角形$\mathrm{ADE}$の面積を$S_1$,三角形$\mathrm{QDE}$の面積を$S_2$とするとき,$\displaystyle \frac{S_2}{S_1}$を求めよ.
(3)四面体$\mathrm{OADE}$の体積を$V_1$,四面体$\mathrm{PQDE}$の体積を$V_2$とするとき,$\displaystyle \frac{V_2}{V_1}$を求めよ.
埼玉大学 国立 埼玉大学 2016年 第4問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,頂点$\mathrm{O}$から$\triangle \mathrm{ABC}$を含む平面に下ろした垂線の足を$\mathrm{H}$とする.また,四面体$\mathrm{OABC}$は
\[ |\overrightarrow{a|}=|\overrightarrow{b|}=|\overrightarrow{c|}=1,\quad \angle \mathrm{AOB}=\angle \mathrm{BOC}=\frac{\pi}{3} \]
を満たすものとし,$\angle \mathrm{AOC}=\theta \left( 0<\theta<\displaystyle\frac{2}{3} \pi \right)$とする.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$を求めよ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$を満たす$s,\ t,\ u$を求めよ.
(4)$|\overrightarrow{\mathrm{OH|}}$を求めよ.
(5)$\displaystyle 0<\theta<\frac{2}{3}\pi$のとき,四面体$\mathrm{OABC}$の体積の最大値を求めよ.
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
スポンサーリンク

「体積」とは・・・

 まだこのタグの説明は執筆されていません。