タグ「三角比」の検索結果

13ページ目:全1924問中121問~130問を表示)
早稲田大学 私立 早稲田大学 2016年 第2問
三角形$\mathrm{ABC}$に対して,ベクトル$\overrightarrow{p},\ \overrightarrow{q}$を
\[ \overrightarrow{p}=(\sin A,\ \sin B),\quad \overrightarrow{q}=(\cos B,\ \cos A) \]
とするとき
\[ \overrightarrow{p} \cdot \overrightarrow{q}=\sin 2C \]
が成り立つ.以下の問に答えよ.


(1)角$C$の大きさは$\displaystyle \frac{[エ]}{[オ]} \pi$である.

(2)$\sin A,\ \sin C,\ \sin B$はこの順で等差数列をなし,かつ,
\[ \overrightarrow{\mathrm{CA}} \cdot (\overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{AC}})=32 \]
であるとき,辺$\mathrm{AB}$の長さは$[カ]$である.
早稲田大学 私立 早稲田大学 2016年 第2問
三角形$\mathrm{ABC}$に対して,ベクトル$\overrightarrow{p},\ \overrightarrow{q}$を
\[ \overrightarrow{p}=(\sin A,\ \sin B),\quad \overrightarrow{q}=(\cos B,\ \cos A) \]
とするとき
\[ \overrightarrow{p} \cdot \overrightarrow{q}=\sin 2C \]
が成り立つ.以下の問に答えよ.


(1)角$C$の大きさは$\displaystyle \frac{[エ]}{[オ]} \pi$である.

(2)$\sin A,\ \sin C,\ \sin B$はこの順で等差数列をなし,かつ,
\[ \overrightarrow{\mathrm{CA}} \cdot (\overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{AC}})=32 \]
であるとき,辺$\mathrm{AB}$の長さは$[カ]$である.
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.関数$f(\theta)=\sin \theta+\sqrt{3} \cos \theta$は最小値$[ア]$を$\theta=[イ]$でとる.関数$\displaystyle g(\theta)=\sqrt{3} f(\theta)-2 \cos \left( \theta+\frac{\pi}{3} \right)$は最小値$[ウ]$を$\theta=[エ]$でとる.
(2)箱から玉を$1$個取り出し,この玉に$1$個の玉を新たに加えた合計$2$個の玉を箱に戻す試行を繰り返す.新たに加える玉の色は白あるいは黒のみとする.最初に,$2$個の白玉と$3$個の黒玉が入っている箱を考える.新たに加える玉の色は取り出した玉と同色とすると,$3$回目の試行において白玉を取り出す確率は$[オ]$,$n$回目の試行において白玉を取り出す確率$P_n$は$[カ]$,極限$\displaystyle \lim_{n \to \infty}P_n$は$[キ]$である.次に,$3$個の白玉と$4$個の黒玉が入っている箱を考える.新たに加える玉の色は取り出した玉と異なる色とすると,$3$回目の試行において白玉を取り出す確率は$[ク]$である.$n$回目の試行において白玉を取り出す確率を$Q_n$とすると,$Q_n$は漸化式$\displaystyle Q_n=[ケ]Q_{n-1}+\frac{1}{6+n} (n \geqq 2)$を満たし,極限$\displaystyle \lim_{n \to \infty}Q_n$は$[コ]$である.
同志社大学 私立 同志社大学 2016年 第4問
$n$を自然数,$k$を$0$以上の整数とする.また,$f(x)=|x \sin (nx)|$,$\displaystyle x_k=\frac{k \pi}{n}$,$\displaystyle \alpha_k=\frac{x_k+x_{k+1}}{2}$とする.次の問いに答えよ.

(1)$\displaystyle T_k=\int_{x_k}^{\alpha_k} f(x) \, dx$とする.$T_k$を$n,\ k$を用いて表し,極限$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n T_k$を求めよ.
(2)$x_k \leqq x \leqq x_{k+1}$の範囲で,関数$f(x)$が最大値をとるときの$x$の値を$\beta_k$とする.$\displaystyle U_k=\int_{x_k}^{\beta_k} f(x) \, dx$とおくと,ある定数$b$を用いて$\displaystyle U_k=\frac{k \pi+b |\sin (n \beta_k)|}{n^2}$と表される.定数$b$の値を求めよ.また,極限$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n U_k$を求めよ.
(3)$x_k \leqq x \leqq \alpha_k$の範囲で,関数$g(x)=|x \cos (nx)|$が最大値をとるときの$x$の値を$\gamma_k$とする.この$\gamma_k$と$(2)$の$\beta_k$に対して,$\displaystyle V_k=\int_{\gamma_k}^{\beta_k} f(x) \, dx$とおく.極限$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n V_k$を求めよ.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[サ]$に当てはまる数または式を記入せよ.

(1)$0 \leqq \theta \leqq \pi$の範囲で,$\cos^2 \theta+\sin \theta \cos \theta=0$を満たす$\theta$をすべて求めると$\theta=[ア]$である.
(2)$10$本のくじのうち当たりくじは$n$本である.同時に$2$本のくじを引いたとき,$2$本ともはずれである確率は$\displaystyle \frac{1}{15}$であった.このとき,$n=[イ]$である.
(3)$\mathrm{AB}=20$,$\mathrm{BC}=24$,$\mathrm{AC}=16$である三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の二等分線が$\mathrm{BC}$と交わる点を$\mathrm{D}$とする.このとき,$\mathrm{BD}=[ウ]$である.
(4)頂点が反時計回りに$\mathrm{ABCDEF}$である正六角形について,$\overrightarrow{\mathrm{FB}}=a \overrightarrow{\mathrm{AB}}+b \overrightarrow{\mathrm{AC}}$と表したとき,$a=[エ]$,$b=[オ]$である.ただし,$a$と$b$は実数とする.
(5)$(3+i)(x+yi)=6+5i$を満たす実数$x,\ y$を求めると,$x=[カ]$,$y=[キ]$である.ただし,$i$は虚数単位とする.
(6)直線$\ell$に関して点$(3,\ 2)$と対称な点は$(1,\ 4)$である.このとき,直線$\ell$の方程式を$ax+by=1$とすると,$a=[ク]$,$b=[ケ]$である.
(7)$975$の正の約数の個数は$[コ]$個である.
(8)$-1 \leqq x \leqq 5$の範囲で,関数$\displaystyle f(x)=\int_{-3}^x (t^2-2t-3) \, dt$が最小値をとるのは$x=[サ]$のときである.
南山大学 私立 南山大学 2016年 第1問
次の$[ ]$の中に答を入れよ.

(1)放物線$C_1:y=x^2+ax+8$を$x$軸方向に$5$だけ平行移動した放物線$C_2$の方程式は$y=[ア]$である.$C_2$を$y$軸に関して対称移動した放物線が$C_1$に一致するとき,定数$a$の値を求めると$a=[イ]$である.
(2)$455$と$273$の最大公約数は$[ウ]$である.また,方程式$455x+273y=2821$を満たす自然数の組$(x,\ y)$をすべて求めると$(x,\ y)=[エ]$である.
(3)$0<\theta<\pi$とする.方程式$\cos 2\theta-\sin \theta=0$を解くと$\theta=[オ]$であり,方程式$\sin 2\theta-\cos 2\theta-\sqrt{6} \sin \theta+1=0$を解くと$\theta=[カ]$である.
(4)$3$つのさいころを同時に投げる.このとき,出る目の積が奇数になる確率は$[キ]$であり,出る目の積が$4$以上の偶数になる確率は$[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
次の$[ ]$にあてはまる最も適当な数を記入しなさい.

三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{BC}=9$,$\mathrm{CA}=9$とする.
このとき$\cos \angle \mathrm{A}=[チ]$であり,三角形$\mathrm{ABC}$の外接円の半径は$[ツ]$である.
この三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の二等分線と三角形$\mathrm{ABC}$の外接円との交点で$\mathrm{A}$とは異なる点を$\mathrm{D}$とする.このとき$\angle \mathrm{BAD}$の大きさを$\theta$(ただし,$0^\circ<\theta<{90}^\circ$)とすると$\sin \theta=[テ]$であり,線分$\mathrm{BD}$の長さは$[ト]$である.また,四角形$\mathrm{ABDC}$の面積は$[ナ]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$2016$の正の約数は全部で$[ア]$個あり,それらの平均は$[イ]$である.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$とする.座標平面上に$3$点$\mathrm{P}_0(1,\ 0)$,$\mathrm{P}_1(\cos \theta,\ \sin \theta)$,$\mathrm{P}_2(\cos 2\theta,\ \sin 2\theta)$がある.$x$軸に関して,点$\mathrm{P}_2$,$\mathrm{P}_1$と対称な点をそれぞれ$\mathrm{P}_3$,$\mathrm{P}_4$とし,さらに,四角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{P}_4$の面積を$S_1(\theta)$,三角形$\mathrm{P}_0 \mathrm{P}_1 \mathrm{P}_4$の面積を$S_2 (\theta)$とする.


(i) $\displaystyle S_1 \left( \frac{\pi}{3} \right)=[ウ]$である.

(ii) $\displaystyle \lim_{\theta \to +0} \frac{S_1(\theta)}{S_2(\theta)}=[エ]$である.

(iii) $S_1(\theta)$は$\cos \theta=[オ]$のとき最大値$[カ]$をとる.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$i$を虚数単位とする.次の事実がある.
\begin{waku}[事実$\mathrm{F}$]
$a,\ b$を互いに素な正の整数とする.このとき,
\[ \left( \cos \frac{2a}{b} \pi+i \sin \frac{2a}{b} \pi \right)^k=\cos \frac{2}{b} \pi+i \sin \frac{2}{b} \pi \]
となる整数$k$が存在する.
\end{waku}

(1)等式
\[ \left( \cos \frac{4}{5} \pi+i \sin \frac{4}{5} \pi \right)^k=\cos \frac{2}{5} \pi+i \sin \frac{2}{5} \pi \]
を満たす最小の正の整数$k$は$[ツ]$である.
(2)$a,\ b$を互いに素な正の整数とし,集合$P$を
\[ P=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a}{b} \pi+i \sin \frac{2a}{b} \pi \right)^k \text{と表される複素数} \right\} \]
で定める.事実$\mathrm{F}$を考慮すると,集合$P$の要素の個数$n(P)$は$[テ]$である.
(3)事実$\mathrm{F}$を証明しなさい.
(4)$a_1,\ b_1$を互いに素な正の整数とし,$a_2,\ b_2$も互いに素な正の整数とする.集合$Q_1$と$Q_2$を

$\displaystyle Q_1=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a_1}{b_1} \pi+i \sin \frac{2a_1}{b_1} \pi \right)^k \text{と表される複素数} \right\}$

$\displaystyle Q_2=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a_2}{b_2} \pi+i \sin \frac{2a_2}{b_2} \pi \right)^k \text{と表される複素数} \right\}$

で定め,集合$R$を
\[ R=\{z \;\bigg|\; \text{$z$は集合$Q_1$の要素と集合$Q_2$の要素の積で表される複素数}\} \]
で定める.$b_1$と$b_2$が互いに素ならば,集合$R$の要素の個数$n(R)$は$[ト]$である.$b_1$と$b_2$が互いに素でないとき,それらの最大公約数を$d$とすれば,集合$R$の要素の個数$n(R)$は$[ナ]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
以下の問いに答えよ.

(1)$k$を自然数とする.数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\{S_n\}$が初項$k$,公比$k$の等比数列であるとする.
\begin{itemize}
$k=3$の場合,$a_n \geqq 5000$を満たすのは$n \geqq [$1$]$のときである.
$a_n$が$100$の倍数となる$n$が存在するような$10$以下の自然数$k$は$[$2$]$つあり,このとき,$a_n$が$100$の倍数となるのは$n \geqq [$3$]$のときである.
\end{itemize}
(2)$\alpha$を$0 \leqq \alpha<2\pi$を満たす定数とする.実数$t$が$0 \leqq t \leqq 2\pi$の範囲で変化するとき,座標平面上の点$\mathrm{P}(\sin t,\ \sin (t+\alpha))$の軌跡を$\mathrm{T}$とする.
\begin{itemize}
$\mathrm{T}$が線分となるような$\alpha$の値をすべて記せ.
$\mathrm{T}$が原点を中心とする円となるような$\alpha$の値をすべて記せ.
\end{itemize}
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。