タグ「e^{」の検索結果

1ページ目:全253問中1問~10問を表示)
京都大学 国立 京都大学 2016年 第4問
$xyz$空間において,平面$y=z$の中で
\[ |x| \leqq \frac{e^y+e^{-y}}{2}-1,\quad 0 \leqq y \leqq \log a \]
で与えられる図形$D$を考える.ただし$a$は$1$より大きい定数とする.

この図形$D$を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
東京海洋大学 国立 東京海洋大学 2016年 第5問
$f(x)=\sqrt{x}e^{-\frac{x}{2}}$(ただし,$x>0$)に対し,座標平面上の曲線$C:y=f(x)$を考える.

(1)$f(x)$の極値を求めよ.
(2)曲線$C$,$2$直線$x=t$,$x=t+1$(ただし,$t>0$)および$x$軸で囲まれる図形を,$x$軸の周りに$1$回転して得られる立体の体積$V$を$t$を用いて表せ.
(3)$V$の最大値を求めよ.
岡山大学 国立 岡山大学 2016年 第3問
$a$は正の数とし,次の関数$y=f_a(x)$のグラフの変曲点を$\mathrm{P}$とする.
\[ f_a(x)=axe^{-\frac{x}{a}} \quad (x \geqq 0) \]
このとき以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を求めよ.
(2)$a$が区間$1 \leqq a \leqq 2$全体を動くとき,点$\mathrm{P}$が描く曲線$C$の概形を図示せよ.
(3)$x \geqq 0$における曲線$y=f_1(x)$,$y=f_2(x)$と$(2)$の曲線$C$の$3$曲線で囲まれた部分の面積を求めよ.
大阪教育大学 国立 大阪教育大学 2016年 第3問
以下の問に答えよ.

(1)$\displaystyle \int_0^x \sin^3 t \, dt$を求めよ.
(2)関数$\displaystyle F(x)=\int_0^x (e^{3x}-e^{3t}) \sin^3 t \, dt$を$x$について微分せよ.
(3)$F^\prime(x) \geqq 0$を証明せよ.
山形大学 国立 山形大学 2016年 第4問
$n$を自然数とし,$t>0$とする.曲線$y=x^ne^{-nx}$と$x$軸および$2$直線$x=t$,$x=2t$で囲まれた図形の面積を$S_n(t)$とする.このとき,次の問に答えよ.

(1)関数$f(x)=xe^{-x}$の極値を求めよ.
(2)$S_1(t)$を$t$を用いて表せ.
(3)関数$S_1(t) (t>0)$の最大値を求めよ.
(4)$\displaystyle \frac{d}{dt}S_n(t)$を求めよ.
(5)関数$S_n(t) (t>0)$が最大値をとるときの$t$の値$t_n$と極限値$\displaystyle \lim_{n \to \infty}t_n$を求めよ.
山形大学 国立 山形大学 2016年 第3問
$n$を自然数とし,$t>0$とする.曲線$y=x^ne^{-nx}$と$x$軸および$2$直線$x=t$,$x=2t$で囲まれた図形の面積を$S_n(t)$とする.このとき,次の問に答えよ.

(1)関数$f(x)=xe^{-x}$の極値を求めよ.
(2)$S_1(t)$を$t$を用いて表せ.
(3)関数$S_1(t) (t>0)$の最大値を求めよ.
(4)$\displaystyle \frac{d}{dt}S_n(t)$を求めよ.
(5)関数$S_n(t) (t>0)$が最大値をとるときの$t$の値$t_n$と極限値$\displaystyle \lim_{n \to \infty}t_n$を求めよ.
東京農工大学 国立 東京農工大学 2016年 第3問
$a$を正の実数とし,$x$の関数$f(x)$を
\[ f(x)=e^{-ax} \tan^2 x \quad \left( -\frac{\pi}{3}<x<\frac{\pi}{3} \right) \]
で定める.ただし,$e$は自然対数の底とする.次の問いに答えよ.

(1)$f(x)$の導関数を$f^\prime(x)$とする.$\displaystyle f^\prime \left( \frac{\pi}{4} \right)=0$が成り立つとき,$a$の値を求めよ.
(2)$f^\prime(x)=0$かつ$\displaystyle -\frac{\pi}{3}<x<\frac{\pi}{3}$を満たす$x$がちょうど$3$個存在するように,定数$a$の値の範囲を定めよ.
(3)$a$の値が$(2)$で定めた範囲にあるとする.このとき,方程式$f^\prime(x)=0$の解を$\displaystyle x_1,\ x_2,\ x_3 \left( -\frac{\pi}{3}<x_1<x_2<x_3<\frac{\pi}{3} \right)$とし,
\[ y_1=f(x_1),\quad y_2=f(x_2),\quad y_3=f(x_3) \]
とおく.

(i) $y_1,\ y_2,\ y_3$を大きさの順に並べよ.
(ii) $\tan x_3$を$a$の式で表せ.
京都工芸繊維大学 国立 京都工芸繊維大学 2016年 第2問
$a$を実数とする.関数
\[ f(x)=e^{ax} \left( 1-\frac{2}{x} \right) \quad (x>0) \]
を考える.$f^\prime(x)=0$となる正の実数$x$の個数を$k$とする.

(1)$k=0$となるような$a$の値の範囲を求めよ.
(2)$k=1$となるような$a$の値の範囲を求めよ.$k=1$のとき,$f^\prime(x)=0$となる正の実数$x$を$t$とする.関数$f(x)$が$x=t$において極値をとるかどうかを調べよ.
(3)$k=2$となるような$a$の値の範囲を求めよ.$k=2$のとき,$f^\prime(x)=0$となる正の実数$x$を$t_1,\ t_2 (t_1<t_2)$とする.関数$f(x)$が$x=t_1$および$x=t_2$のそれぞれにおいて極値をとるかどうかを調べよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第2問
以下では$n$は$0$以上の整数とする.関係式
\[ H_0(x)=1,\quad H_{n+1}(x)=2xH_n(x)-H_n^\prime(x) \]
によって多項式$H_0(x),\ H_1(x),\ \cdots$を定め,$\displaystyle f_n(x)=H_n(x)e^{-\frac{x^2}{2}}$とおく.

(1)$-f_0^{\prime\prime}(x)+x^2f_0(x)=a_0f_0(x)$が成り立つように定数$a_0$を定めよ.
(2)$f_{n+1}(x)=xf_n(x)-f_n^\prime(x)$を示せ.
(3)$2$回微分可能な関数$f(x)$に対して,$g(x)=xf(x)-f^\prime(x)$とおく.定数$a$に対して
\[ -f^{\prime\prime}(x)+x^2f(x)=af(x) \]
が成り立つとき,
\[ -g^{\prime\prime}(x)+x^2g(x)=(a+2)g(x) \]
を示せ.
(4)$-f_n^{\prime\prime}(x)+x^2f_n(x)=a_nf_n(x)$が成り立つように定数$a_n$を定めよ.
福島大学 国立 福島大学 2016年 第4問
$\displaystyle F(x)=\int_0^x e^{-pt} \sin t \, dt$($p$は正の定数)とする.このとき,次の問いに答えなさい.

(1)関数$F(x)$を微分しなさい.
(2)関数$y=Ae^{-px} \cos x+Be^{-px} \sin x+C$($A,\ B,\ C$は定数)を微分しなさい.
(3)$F(x)=Ae^{-px} \cos x+Be^{-px} \sin x+C$($A,\ B,\ C$は定数)と表すことができる.このとき,$A,\ B,\ C$の値を求めなさい.
ただし,$F(0)$,$F^\prime(0)$,$\displaystyle F^\prime \left( \frac{\pi}{2} \right)$の値を用いてよい.
(4)$T_n=|F(n\pi)-F((n-1)\pi)| (n=1,\ 2,\ 3,\ \cdots)$とする.このとき,$T_1,\ T_2$の値を求めなさい.
(5)$(4)$の$T_n$に対して$\displaystyle \sum_{n=1}^\infty T_n$を求めなさい.
スポンサーリンク

「e^{」とは・・・

 まだこのタグの説明は執筆されていません。