タグ「面積」の検索結果

9ページ目:全2409問中81問~90問を表示)
小樽商科大学 国立 小樽商科大学 2016年 第5問
$2$曲線$y=e^x-1$,$\displaystyle y=e^{-x}+\frac{1}{2}$と$y$軸で囲まれた部分の面積を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第3問
座標平面において,実数$x$に対して,$4$点$(x,\ 0)$,$(x+1,\ 0)$,$(x+1,\ 1)$,$(x,\ 1)$を頂点とする正方形で囲まれる領域を$A_x$とし,$A_1 \cap A_x$の面積を$f(x)$とおく.ただし,$A_1 \cap A_x$が空集合あるいは線分のときは,$f(x)=0$とする.このとき以下の各問いに答えよ.

(1)$f(x)$のグラフをかけ.

(2)$\displaystyle g(x)=\int_0^1 f(x-t) \, dt$とおくとき,$\displaystyle g \left( \frac{1}{2} \right)$,$g(2)$を求めよ.

(3)$(2)$の$g(x)$について,$\displaystyle \int_0^3 xg(x) \, dx$を求めよ.
大阪大学 国立 大阪大学 2016年 第5問
円上の$5$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$は反時計回りにこの順に並び,円周を$5$等分している.$5$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$を頂点とする正五角形を$\mathrm{R}_1$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CD}}=\overrightarrow{c}$とおき,$\overrightarrow{a}$の大きさを$x$とする.

(1)$\overrightarrow{\mathrm{AC}}$の大きさを$y$とするとき,$x^2=y(y-x)$がなりたつことを示せ.
(2)$\overrightarrow{\mathrm{BC}}$を$\overrightarrow{a},\ \overrightarrow{c}$を用いて表せ.
(3)$\mathrm{R}_1$の対角線の交点として得られる$\mathrm{R}_1$の内部の$5$つの点を頂点とする正五角形を$\mathrm{R}_2$とする.$\mathrm{R}_2$の一辺の長さを$x$を用いて表せ.
(4)$n=1,\ 2,\ 3,\ \cdots$に対して,$\mathrm{R}_n$の対角線の交点として得られる$\mathrm{R}_n$の内部の$5$つの点を頂点とする正五角形を$\mathrm{R}_{n+1}$とし,$\mathrm{R}_n$の面積を$S_n$とする.
\[ \lim_{n \to \infty} \frac{1}{S_1} \sum_{k=1}^n (-1)^{k+1}S_k \]
を求めよ.
(図は省略)
徳島大学 国立 徳島大学 2016年 第1問
座標平面上の曲線$\displaystyle \frac{x^2}{4}+y^2=1 (y \geqq 0)$を$C$とする.実数$t>1$に対して,点$(0,\ t)$を通り第$1$象限の点$(a,\ b)$で曲線$C$に接する直線を$\ell$とする.

(1)$x$軸,$y$軸と$\ell$で囲まれた部分の面積を$S_1(t)$とする.$t$が$t>1$の範囲を動くとき,$S_1(t)$の最小値を求めよ.
(2)曲線$C$と直線$y=b$で囲まれた部分の面積を$S_2(t)$とする.$t$が$t>1$の範囲を動くとき,導関数$S_2^\prime(t)$の最大値を求めよ.
徳島大学 国立 徳島大学 2016年 第2問
$0$でない複素数$\alpha,\ \beta$が$\alpha^2+\alpha\beta+\beta^2=0$を満たすとする.複素数平面上の$4$点を$\mathrm{O}(0)$,$\mathrm{A}(\alpha)$,$\mathrm{B}(\beta)$,$\mathrm{C}(-\beta)$として,次の問いに答えよ.

(1)$\displaystyle \frac{\beta}{\alpha}$を求めよ.
(2)$\displaystyle \frac{\beta}{\alpha}$の絶対値$r$および偏角$\theta$を求めよ.ただし,偏角の範囲は$0 \leqq \theta<2\pi$とする.
(3)$\triangle \mathrm{ABO}$の$3$つの角の大きさを求めよ.
(4)$\triangle \mathrm{ABO}$の面積を$S_1$とし,$\triangle \mathrm{ABC}$の面積を$S_2$とするとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
徳島大学 国立 徳島大学 2016年 第3問
$\triangle \mathrm{OAB}$の頂点を$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 0)$,$\mathrm{B}(a,\ b)$とする.辺$\mathrm{OA}$を$p:(1-p)$に内分する点を$\mathrm{P}$,辺$\mathrm{AB}$を$q:(1-q)$に内分する点を$\mathrm{Q}$,辺$\mathrm{BO}$を$r:(1-r)$に内分する点を$\mathrm{R}$とする.ただし,$0<p<1$,$0<q<1$,$0<r<1$とする.$\triangle \mathrm{OAB}$の面積を$S_1$,$\triangle \mathrm{PQR}$の面積を$S_2$として,次の問いに答えよ.

(1)$\triangle \mathrm{OAB}$の重心と$\triangle \mathrm{PQR}$の重心が一致するとき,$p:q:r$を求めよ.
(2)$3$点$(0,\ 0)$,$(x_1,\ y_1)$,$(x_2,\ y_2)$を頂点とする三角形の面積は,$\displaystyle \frac{1}{2} |x_1y_2-x_2y_1|$で表されることを示せ.
(3)$\displaystyle \frac{S_2}{S_1}$を$p,\ q,\ r$を用いて表せ.
(4)$\triangle \mathrm{OAB}$の重心と$\triangle \mathrm{PQR}$の重心が一致するとき,$\displaystyle \frac{S_2}{S_1}$の最小値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2016年 第1問
空間内の平面$\alpha$上に平行四辺形$\mathrm{OABC}$があり,
\[ \mathrm{OA}=2,\quad \mathrm{OC}=3,\quad \angle \mathrm{AOC}=\frac{\pi}{3} \]
とする.点$\mathrm{C}$を通り$\alpha$に垂直な直線上に点$\mathrm{D}$があり,
\[ \mathrm{CD}=1 \]
とする.$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{D}$を通る平面を$\beta$とし,$\mathrm{C}$を通り$\beta$に垂直な直線と$\beta$との交点を$\mathrm{H}$とする.

(1)$\triangle \mathrm{OBD}$の面積を求めよ.
(2)線分$\mathrm{CH}$の長さを求めよ.
高知大学 国立 高知大学 2016年 第4問
座標平面上に放物線$\displaystyle C:y=\frac{1}{6 \sqrt{3}}x^2$を考える.次の問いに答えよ.

(1)$C$と$2$点$\displaystyle \left( -3,\ \frac{\sqrt{3}}{2} \right)$,$\displaystyle \left( 3,\ \frac{\sqrt{3}}{2} \right)$で接している円の方程式を求めよ.
(2)$C$と$(1)$の円で囲まれる部分の面積を求めよ.
(3)$C$と点$\displaystyle \left( 3,\ \frac{\sqrt{3}}{2} \right)$で接し,$y$軸にも接している円の方程式を求めよ.
(4)$C$と$y$軸および$(3)$の円で囲まれる部分の面積を求めよ.
熊本大学 国立 熊本大学 2016年 第2問
$x \geqq 1$で定義された関数
\[ f(x)=\frac{\log x}{x^2} \]
について,以下の問いに答えよ.

(1)$x \geqq 1$における$f(x)$の最大値とそのときの$x$の値を求めよ.
(2)$(1)$で求めた$x$の値を$a$とする.曲線$y=f(x)$と$2$直線$y=0$,$x=a$で囲まれた図形を$D$とする.$D$の面積を求めよ.
(3)$(2)$の図形$D$を$y$軸の周りに$1$回転させてできる立体の体積を求めよ.
熊本大学 国立 熊本大学 2016年 第4問
$a,\ b$を実数とし,曲線$C:y=x^3-3ax^2+bx$を考える.$C$の接線の傾きの最小値が$-3$であるとき,以下の問いに答えよ.

(1)$b$を$a$を用いて表せ.
(2)$C$が$x$軸の正の部分,負の部分とそれぞれ$1$点で交わるとする.このとき$a$の値の範囲を求めよ.
(3)$a$が$(2)$で求めた範囲にあるとき,$C$と$x$軸で囲まれた図形の面積の最小値を求め,そのときの$a$の値を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。