タグ「面積」の検索結果

4ページ目:全2409問中31問~40問を表示)
埼玉大学 国立 埼玉大学 2016年 第3問
次の問いに答えよ.

(1)$\displaystyle f(x)=\frac{e^x}{x^2+3x+1}$とする.$x>0$の範囲で$f(x)$が最小になる$x$の値と,そのときの$f(x)$の値を求めよ.
(2)$a>0$とする.曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と$2$つの直線$\ell_1:y=2e^ax$,$\ell_2:y=(a^2+3a+1)x$を考える.$C$と$\ell_1$と$\ell_2$で囲まれる部分を$D$とする.

\mon[(ア)] $C$と$\ell_1$の交点,および,$C$と$\ell_2$の交点の座標を求めよ.
\mon[(イ)] $(1)$を用いて$2e^a>a^2+3a+1$であることを示せ.ただし,$e=2.7182 \cdots$であることは用いてよい.
\mon[(ウ)] $D$の面積を$a$を用いて表せ.
\mon[(エ)] $D$の面積を最小にする$a$の値と,そのときの$D$の面積を求めよ.
埼玉大学 国立 埼玉大学 2016年 第4問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,頂点$\mathrm{O}$から$\triangle \mathrm{ABC}$を含む平面に下ろした垂線の足を$\mathrm{H}$とする.また,四面体$\mathrm{OABC}$は
\[ |\overrightarrow{a|}=|\overrightarrow{b|}=|\overrightarrow{c|}=1,\quad \angle \mathrm{AOB}=\angle \mathrm{BOC}=\frac{\pi}{3} \]
を満たすものとし,$\angle \mathrm{AOC}=\theta \left( 0<\theta<\displaystyle\frac{2}{3} \pi \right)$とする.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$を求めよ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$を満たす$s,\ t,\ u$を求めよ.
(4)$|\overrightarrow{\mathrm{OH|}}$を求めよ.
(5)$\displaystyle 0<\theta<\frac{2}{3}\pi$のとき,四面体$\mathrm{OABC}$の体積の最大値を求めよ.
東北大学 国立 東北大学 2016年 第5問
空間内に,直線$\ell$で交わる$2$平面$\alpha,\ \beta$と交線$\ell$上の$1$点$\mathrm{O}$がある.さらに,平面$\alpha$上の直線$m$と平面$\beta$上の直線$n$を,どちらも点$\mathrm{O}$を通り$\ell$に垂直にとる.$m,\ n$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$があり,
\[ \mathrm{OP}=\sqrt{3},\quad \mathrm{OQ}=2,\quad \mathrm{PQ}=1 \]
であるとする.線分$\mathrm{PQ}$上の動点$\mathrm{T}$について,$\mathrm{PT}=t$とおく.点$\mathrm{T}$を中心とした半径$\sqrt{2}$の球$S$を考える.このとき,以下の問いに答えよ.

(1)$S$の平面$\alpha$による切り口の面積を$t$を用いて表せ.
(2)$S$の平面$\alpha$による切り口の面積と$S$の平面$\beta$による切り口の面積の和を$f(t)$とおく.$\mathrm{T}$が線分$\mathrm{PQ}$上を動くとき,$f(t)$の最大値と,そのときの$t$の値を求めよ.
岐阜大学 国立 岐阜大学 2016年 第5問
$xy$平面上に,直線$\ell:y=-x-2$と点$\mathrm{A}(1,\ 1)$がある.点$\mathrm{A}$からの距離と直線$\ell$からの距離が等しい点の軌跡を曲線$C$とする.以下の問に答えよ.

(1)曲線$C$の方程式を求めよ.
(2)曲線$C$と$x$軸の共有点の座標を求めよ.
(3)曲線$C$と$x$軸で囲まれた部分の面積を求めよ.
東京工業大学 国立 東京工業大学 2016年 第5問
次のように媒介変数表示された$xy$平面上の曲線を$C$とする:
\[ \left\{ \begin{array}{l}
x=3 \cos t-\cos 3t \phantom{\frac{8}{8}} \\
y=3 \sin t-\sin3 t \phantom{\frac{[ ]}{8}}
\end{array} \right. \]
ただし$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$である.

(1)$\displaystyle \frac{dx}{dt}$および$\displaystyle \frac{dy}{dt}$を計算し,$C$の概形を図示せよ.
(2)$C$と$x$軸と$y$軸で囲まれた部分の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2016年 第1問
$a,\ b,\ c$を定数とし,$a \neq 0$とする.関数$f(x)$を
\[ f(x)=ax^2+bx+c \]
と定める.放物線$y=f(x)$の頂点の$x$座標を$x=1$とする.また,放物線$y=f(x)$と直線$y=x$の交点の$x$座標を$x=2$と$x=-3$とする.

(1)$a,\ b,\ c$の値を求めよ.
(2)放物線$y=f(x)$と関数$y=|x|$のグラフの交点をすべて求めよ.
(3)放物線$y=f(x)$と関数$y=|x|$のグラフで囲まれた図形の面積$S$を求めよ.
室蘭工業大学 国立 室蘭工業大学 2016年 第2問
関数$y=f(x)$のグラフが媒介変数$\theta$を用いて
\[ \left\{ \begin{array}{l}
x=\sin \theta-\theta \cos \theta \phantom{\frac{1}{[ ]}} \\
y=\cos \theta+\theta \sin \theta \phantom{\frac{1}{1}}
\end{array} \right. \quad (0 \leqq \theta \leqq \pi) \]
と表されている.

(1)関数$y=f(x)$の極値を求めよ.

(2)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \theta \sin 2\theta \, d\theta$および$\displaystyle \int_0^{\frac{\pi}{2}} \theta^2 \cos 2\theta \, d\theta$を計算せよ.

(3)関数$y=f(x)$のグラフと$x$軸,および$2$直線$x=0$と$x=1$で囲まれた図形の面積$S$を求めよ.
愛知教育大学 国立 愛知教育大学 2016年 第4問
$xy$平面において,点$(0,\ 2)$を中心とする半径$2$の円を$C$とする.また,放物線$y=ax^2$を$P$とする.ただし,$a$は正の実数とする.

(1)円$C$と放物線$P$との共有点が円$C$の円周の長さを$3$等分するとき,$a$の値を求めよ.
(2)$a$の値を$(1)$で求めたものとする.このとき,円$C$と放物線$P$により囲まれてできる図形のうち,点$\displaystyle \left( \frac{3}{2},\ \frac{3}{2} \right)$を内部に含む図形の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2016年 第5問
$\triangle \mathrm{OAB}$が$|\overrightarrow{\mathrm{OA|}}=4$,$|\overrightarrow{\mathrm{OB|}}=3$,$\angle \mathrm{AOB}={60}^\circ$を満たすとする.また,$\angle \mathrm{AOB}$の二等分線と点$\mathrm{A}$から辺$\mathrm{OB}$への垂線との交点を$\mathrm{P}$とする.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(2)面積の比$\triangle \mathrm{POA}:\triangle \mathrm{PAB}:\triangle \mathrm{PBO}$を求めよ.
大阪教育大学 国立 大阪教育大学 2016年 第2問
実数$a,\ b$に対して,座標空間の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{P}(1,\ 0,\ a)$,$\mathrm{Q}(0,\ 2,\ b)$を考える.三角形$\mathrm{OPQ}$の面積を$S$とする.

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$のなす角を$\theta$とするとき,$\cos \theta$を$a,\ b$を用いて表せ.
(2)$S$を$a,\ b$を用いて表せ.
(3)$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$が定める平面上に点$\mathrm{R}(1,\ 1,\ 1)$があるとき,$a$と$b$の関係を求め,$S$の最小値を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。