タグ「面積」の検索結果

10ページ目:全2409問中91問~100問を表示)
熊本大学 国立 熊本大学 2016年 第4問
$x \geqq 1$で定義された関数
\[ f(x)=\frac{\log x}{x^2} \]
について,以下の問いに答えよ.

(1)$x \geqq 1$における$f(x)$の最大値とそのときの$x$の値を求めよ.
(2)$(1)$で求めた$x$の値を$a$とする.曲線$y=f(x)$と$2$直線$y=0$,$x=a$で囲まれた図形を$D$とする.$D$の面積を求めよ.
(3)$(2)$の図形$D$を$y$軸の周りに$1$回転させてできる立体の体積を求めよ.
和歌山大学 国立 和歌山大学 2016年 第4問
$a \geqq 0$を満たす実数$a$に対して,関数
\[ f(t)=t^3-6t^2+9t \]
の$-1 \leqq t \leqq a$における最大値を$g(a)$とする.次の問いに答えよ.

(1)$g(2)$と$g(5)$を求めよ.
(2)$0 \leqq x \leqq 5$の範囲で$y=g(x)$のグラフの概形をかけ.
(3)$y=g(x)$のグラフと$x$軸および直線$x=5$で囲まれた部分の面積$S$を求めよ.
和歌山大学 国立 和歌山大学 2016年 第4問
$t$を実数とし,$xy$平面上に直線$\ell:y=tx$と曲線$C:y=\log x$がある.次の問いに答えよ.

(1)$\ell$が$C$と共有点をもたないとき,$t$のとり得る値の範囲を求めよ.
(2)$\ell$が$C$と接するとき,$\ell$と$C$および$x$軸で囲まれた部分の面積$S$を求めよ.
(3)正の実数$a$に対して,$C$上の点$\mathrm{A}(a,\ \log a)$と$\ell$の距離を$f(a)$とおく.$f(a)$の最小値を$t$を用いて表せ.
宮崎大学 国立 宮崎大学 2016年 第3問
複素数$z$の方程式$z^3+i=z^2+iz$($i$は虚数単位)の$3$つの解を,その偏角$\theta$(ただし,$0 \leqq \theta<2\pi$)の小さい順に$\alpha,\ \beta,\ \gamma$とする.複素数平面上で,$\alpha,\ \beta,\ \gamma$を表す点をそれぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とし,直線$\mathrm{AC}$に関して$\mathrm{B}$と対称な点を$\mathrm{D}$,直線$\mathrm{AB}$に関して$\mathrm{C}$と対称な点を$\mathrm{E}$とする.このとき,次の各問に答えよ.

(1)$\alpha,\ \beta,\ \gamma$を$x+yi$($x,\ y$は実数)の形でそれぞれ表せ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)複素数平面上で,$3$点$\mathrm{A}$,$\mathrm{D}$,$\mathrm{E}$を通る円周上のどの複素数$z$も,$z \overline{z}+sz+t \overline{z}+u=0$を満たすような複素数の定数$s,\ t,\ u$を求めよ.
宮崎大学 国立 宮崎大学 2016年 第3問
関数$\displaystyle f(x)=-\frac{1}{2}x^2+2 |x+1|+1$に対し,座標平面上の曲線$y=f(x)$を$C$とする.点$\mathrm{P}(t,\ f(t)) (t>-1)$における曲線$C$の接線に垂直で,点$\mathrm{P}$を通る直線を$\ell$とする.このとき,次の各問に答えよ.

(1)直線$\ell$の方程式を,$t$を用いて表せ.
(2)直線$\ell$が点$(-1,\ f(-1))$を通るとき,$t$の中で最も小さいものを求めよ.
(3)$(2)$で求めた$t$が定める直線$\ell$と曲線$C$によって囲まれる部分の面積を求めよ.
宮崎大学 国立 宮崎大学 2016年 第2問
複素数$z$の方程式$z^3+i=z^2+iz$($i$は虚数単位)の$3$つの解を,その偏角$\theta$(ただし,$0 \leqq \theta<2\pi$)の小さい順に$\alpha,\ \beta,\ \gamma$とする.複素数平面上で,$\alpha,\ \beta,\ \gamma$を表す点をそれぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とし,直線$\mathrm{AC}$に関して$\mathrm{B}$と対称な点を$\mathrm{D}$,直線$\mathrm{AB}$に関して$\mathrm{C}$と対称な点を$\mathrm{E}$とする.このとき,次の各問に答えよ.

(1)$\alpha,\ \beta,\ \gamma$を$x+yi$($x,\ y$は実数)の形でそれぞれ表せ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)複素数平面上で,$3$点$\mathrm{A}$,$\mathrm{D}$,$\mathrm{E}$を通る円周上のどの複素数$z$も,$z \overline{z}+sz+t \overline{z}+u=0$を満たすような複素数の定数$s,\ t,\ u$を求めよ.
弘前大学 国立 弘前大学 2016年 第3問
半円$C_1:x^2+y^2=3,\ y>0$と放物線$C_2:y=ax^2$を考える.点$(2,\ 0)$を通り,$C_1$と接する直線を$\ell$とし,$C_1$と$\ell$の接点を$\mathrm{T}$とする.

(1)$\ell$の方程式を求めよ.
(2)$C_2$が点$\mathrm{T}$を通るときの$a$の値を求めよ.
(3)$(2)$で求めた$a$に対して,$C_2$と$\ell$で囲まれた部分の面積を$S_1$とし,$C_1$と$C_2$で囲まれた部分の面積を$S_2$とする.$S_1-S_2$を求めよ.
香川大学 国立 香川大学 2016年 第2問
座標平面上の放物線$y=-x^2+2$を$C_1$とし,$0<t<\sqrt{2}$に対して,$C_1$上の点$\mathrm{P}(t,\ -t^2+2)$をとる.点$\mathrm{P}$を通り$x$軸に平行な直線を$\ell$とする.また,点$\mathrm{P}$を通り,$y$軸を軸とし原点を頂点とする放物線を$C_2$とする.このとき,次の問に答えよ.

(1)放物線$C_2$の方程式を求めよ.
(2)放物線$C_2$と直線$\ell$で囲まれた部分の面積$S_2(t)$を$t$を用いて表せ.
(3)関数$S_2(t)$の$0<t<\sqrt{2}$における最大値とそのときの$t$を求めよ.
(4)放物線$C_1$と直線$\ell$で囲まれた部分の面積を$S_1(t)$とするとき,$S_1(t)=S_2(t)$となる$t$を求めよ.
香川大学 国立 香川大学 2016年 第2問
座標平面上の放物線$y=-x^2+2$を$C_1$とし,$0<t<\sqrt{2}$に対して,$C_1$上の点$\mathrm{P}(t,\ -t^2+2)$をとる.点$\mathrm{P}$を通り$x$軸に平行な直線を$\ell$とする.また,点$\mathrm{P}$を通り,$y$軸を軸とし原点を頂点とする放物線を$C_2$とする.このとき,次の問に答えよ.

(1)放物線$C_2$の方程式を求めよ.
(2)放物線$C_2$と直線$\ell$で囲まれた部分の面積$S_2(t)$を$t$を用いて表せ.
(3)関数$S_2(t)$の$0<t<\sqrt{2}$における最大値とそのときの$t$を求めよ.
(4)放物線$C_1$と直線$\ell$で囲まれた部分の面積を$S_1(t)$とするとき,$S_1(t)=S_2(t)$となる$t$を求めよ.
香川大学 国立 香川大学 2016年 第2問
座標平面上の放物線$y=-x^2+2$を$C_1$とし,$0<t<\sqrt{2}$に対して,$C_1$上の点$\mathrm{P}(t,\ -t^2+2)$をとる.点$\mathrm{P}$を通り$x$軸に平行な直線を$\ell$とする.また,点$\mathrm{P}$を通り,$y$軸を軸とし原点を頂点とする放物線を$C_2$とする.このとき,次の問に答えよ.

(1)放物線$C_2$の方程式を求めよ.
(2)放物線$C_2$と直線$\ell$で囲まれた部分の面積$S_2(t)$を$t$を用いて表せ.
(3)関数$S_2(t)$の$0<t<\sqrt{2}$における最大値とそのときの$t$を求めよ.
(4)放物線$C_1$と直線$\ell$で囲まれた部分の面積を$S_1(t)$とするとき,$S_1(t)=S_2(t)$となる$t$を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。