タグ「関数」の検索結果

8ページ目:全2213問中71問~80問を表示)
高知大学 国立 高知大学 2016年 第4問
自然数$n$と多項式$f(x)$に対して,$\displaystyle a_n=\int_{-1}^1 x^{n-1}f(x) \, dx$で与えられる数列$\{a_n\}$を考える.このとき,次の問いに答えよ.

(1)$f(x)$が$2$次式で$a_1=0$のとき,$a_3 \neq 0$を示せ.
(2)$f(x)$が$2$次式で$a_1=1$,$a_2=0$,$\displaystyle a_3=\frac{3}{5}$のとき,一般項$a_n$を求めよ.
(3)$f(x)$を$k$次式とする.$f(x)$の係数の絶対値のうち最大なものを$M$とおくとき,任意の自然数$n$に対して,$\displaystyle |a_{2n|} \leqq \frac{(k+1)M}{2n+1}$が成り立つことを示せ.
(4)任意の多項式$f(x)$に対して$\displaystyle \lim_{n \to \infty}a_n=0$が成り立つことを示せ.
高知大学 国立 高知大学 2016年 第1問
次の問いに答えよ.

(1)$\log_4 6,\ \log_8 9,\ \log_9 8$を小さい順にならべよ.
(2)関数$\displaystyle y=\log_{\frac{1}{2}} (5-x)+\log_{\frac{1}{8}} (x-1)^3$の最小値を求めよ.
熊本大学 国立 熊本大学 2016年 第2問
$x \geqq 1$で定義された関数
\[ f(x)=\frac{\log x}{x^2} \]
について,以下の問いに答えよ.

(1)$x \geqq 1$における$f(x)$の最大値とそのときの$x$の値を求めよ.
(2)$(1)$で求めた$x$の値を$a$とする.曲線$y=f(x)$と$2$直線$y=0$,$x=a$で囲まれた図形を$D$とする.$D$の面積を求めよ.
(3)$(2)$の図形$D$を$y$軸の周りに$1$回転させてできる立体の体積を求めよ.
熊本大学 国立 熊本大学 2016年 第4問
$x \geqq 1$で定義された関数
\[ f(x)=\frac{\log x}{x^2} \]
について,以下の問いに答えよ.

(1)$x \geqq 1$における$f(x)$の最大値とそのときの$x$の値を求めよ.
(2)$(1)$で求めた$x$の値を$a$とする.曲線$y=f(x)$と$2$直線$y=0$,$x=a$で囲まれた図形を$D$とする.$D$の面積を求めよ.
(3)$(2)$の図形$D$を$y$軸の周りに$1$回転させてできる立体の体積を求めよ.
防衛医科大学校 国立 防衛医科大学校 2016年 第1問
以下の問に答えよ.

(1)$\displaystyle a_n=\sum_{k=1}^n 12k(100)^{n-k} (n=1,\ 2,\ 3,\ \cdots)$で表される数列$\{a_n\}$がある.$a_{17}-a_6$の下$1$桁から$12$桁までの数の和はいくらか.
(2)関数
\[ f(x)=\left\{ \begin{array}{cl}
2x & \left( 0 \leqq x<\displaystyle\frac{1}{2} \right) \phantom{\displaystyle\frac{2}{1}} \\
-2x+2 & \left( \displaystyle\frac{1}{2} \leqq x \leqq 1 \right) \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \]
とする.このとき,$\displaystyle \int_0^1 |f(f(x))-\sin 2\pi x| \, dx$はいくらか.

(3)極限値$\displaystyle \lim_{x \to \infty} \left( \displaystyle\frac{2x-2}{2x-1}-\displaystyle\frac{2}{{(2x-1)}^2} \right)^{3x}$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2016年 第4問
関数$f(x)=\sin^{2n+2}x+4 \cos^{2n+2}x$($\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$,$n$は自然数)について以下の問に答えよ.

(1)$\displaystyle \int_0^{\frac{\pi}{2}} f(x) \, dx$はいくらか.

(2)$f(x)$の最小値はいくらか.
和歌山大学 国立 和歌山大学 2016年 第4問
$a \geqq 0$を満たす実数$a$に対して,関数
\[ f(t)=t^3-6t^2+9t \]
の$-1 \leqq t \leqq a$における最大値を$g(a)$とする.次の問いに答えよ.

(1)$g(2)$と$g(5)$を求めよ.
(2)$0 \leqq x \leqq 5$の範囲で$y=g(x)$のグラフの概形をかけ.
(3)$y=g(x)$のグラフと$x$軸および直線$x=5$で囲まれた部分の面積$S$を求めよ.
宮崎大学 国立 宮崎大学 2016年 第3問
関数$\displaystyle f(x)=-\frac{1}{2}x^2+2 |x+1|+1$に対し,座標平面上の曲線$y=f(x)$を$C$とする.点$\mathrm{P}(t,\ f(t)) (t>-1)$における曲線$C$の接線に垂直で,点$\mathrm{P}$を通る直線を$\ell$とする.このとき,次の各問に答えよ.

(1)直線$\ell$の方程式を,$t$を用いて表せ.
(2)直線$\ell$が点$(-1,\ f(-1))$を通るとき,$t$の中で最も小さいものを求めよ.
(3)$(2)$で求めた$t$が定める直線$\ell$と曲線$C$によって囲まれる部分の面積を求めよ.
宮崎大学 国立 宮崎大学 2016年 第1問
次の各問に答えよ.ただし,$\log x$は$x$の自然対数を表す.

(1)次の関数を微分せよ.

(i) $\displaystyle y=\frac{x}{1+e^{\frac{1}{x}}}$

(ii) $\displaystyle y=\log \sqrt{\frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}-x}}$


(2)次の定積分の値を求めよ.


(i) $\displaystyle \int_0^2 |e^x-2| \, dx$

(ii) $\displaystyle \int_0^{\frac{\pi}{3}} x \sin^2 (2x) \, dx$

(iii) $\displaystyle \int_1^e \frac{\sqrt{1+\log x}}{x} \, dx$

\mon[$\tokeishi$] $\displaystyle \int_2^4 \frac{2x^3+x^2-2x+2}{x^4+x^2-2} \, dx$
宮崎大学 国立 宮崎大学 2016年 第5問
$k>0$,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.座標平面上の原点$\mathrm{O}$,点$\mathrm{A}(0,\ 1)$に対し,第一象限の点$\mathrm{P}$を,$\angle \mathrm{AOP}=\theta$を満たすように円$D:x^2+y^2=1$上にとり,直線$\mathrm{OP}$と直線$x=k \theta$との交点を$\mathrm{Q}$とする.$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で動かすときの点$\mathrm{Q}$の軌跡を曲線$y=f(x)$とし,関数$\displaystyle y=g(x)=\frac{f(x)}{x}$で定める曲線を$C$とする.このとき,次の各問に答えよ.

(1)$r(\theta)=\mathrm{OQ}$とするとき,$\displaystyle \lim_{\theta \to +0} r(\theta)$の値を求めよ.
(2)点$\mathrm{Q}$がつねに円$D$の内部にあるための$k$の条件を求めよ.
(3)関数$g(x)$の増減と凹凸を調べ,曲線$C$の概形をかけ.
(4)曲線$C$と$x$軸および$2$直線$\displaystyle x=\frac{\pi}{4}k$,$\displaystyle x=\frac{\pi}{3}k$とで囲まれた図形を$x$軸のまわりに$1$回転させてできる立体の体積を,$k$を用いて表せ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。