タグ「軌跡」の検索結果

1ページ目:全221問中1問~10問を表示)
岐阜大学 国立 岐阜大学 2016年 第5問
$xy$平面上に,直線$\ell:y=-x-2$と点$\mathrm{A}(1,\ 1)$がある.点$\mathrm{A}$からの距離と直線$\ell$からの距離が等しい点の軌跡を曲線$C$とする.以下の問に答えよ.

(1)曲線$C$の方程式を求めよ.
(2)曲線$C$と$x$軸の共有点の座標を求めよ.
(3)曲線$C$と$x$軸で囲まれた部分の面積を求めよ.
北海道大学 国立 北海道大学 2016年 第5問
空間の$2$点$\mathrm{A}(0,\ 0,\ 2)$,$\mathrm{B}(0,\ 1,\ 3)$を通る直線を$\ell$とし,$2$点$\mathrm{C}(1,\ 0,\ 0)$,$\mathrm{D}(1,\ 0,\ 1)$を通る直線を$m$とする.$a$を定数として,$\ell$上にも$m$上にもない点$\mathrm{P}(s,\ t,\ a)$を考える.

(1)$\mathrm{P}$から$\ell$に下ろした垂線と$\ell$の交点を$\mathrm{Q}$とし,$\mathrm{P}$から$m$に下ろした垂線と$m$の交点を$\mathrm{R}$とする.$\mathrm{Q}$,$\mathrm{R}$の座標をそれぞれ$s,\ t,\ a$を用いて表せ.
(2)$\mathrm{P}$を中心とし,$\ell$と$m$がともに接するような球面が存在するための条件を$s,\ t,\ a$の関係式で表せ.
(3)$s,\ t$と定数$a$が$(2)$の条件をみたすとき,平面上の点$(s,\ t)$の軌跡が放物線であることを示し,その焦点と準線を$a$を用いて表せ.
筑波大学 国立 筑波大学 2016年 第1問
$k$を実数とする.$xy$平面の曲線$C_1:y=x^2$と$C_2:y=-x^2+2kx+1-k^2$が異なる共有点$\mathrm{P}$,$\mathrm{Q}$を持つとする.ただし点$\mathrm{P}$,$\mathrm{Q}$の$x$座標は正であるとする.また,原点を$\mathrm{O}$とする.

(1)$k$のとりうる値の範囲を求めよ.
(2)$k$が$(1)$の範囲を動くとき,$\triangle \mathrm{OPQ}$の重心$\mathrm{G}$の軌跡を求めよ.
(3)$\triangle \mathrm{OPQ}$の面積を$S$とするとき,$S^2$を$k$を用いて表せ.
(4)$k$が$(1)$の範囲を動くとする.$\triangle \mathrm{OPQ}$の面積が最大となるような$k$の値と,そのときの重心$\mathrm{G}$の座標を求めよ.
福島大学 国立 福島大学 2016年 第4問
次の方程式で表される二つの直線$\ell_1,\ \ell_2$を考える.

$\ell_1:(a-1)(x+1)-(a+1)y=0$
$\ell_2:ax-y-1=0$


(1)$\ell_1$は$a$の値によらず定点を通る.この定点の座標を求めなさい.
(2)$a$が実数全体を動くときの,$\ell_1$と$\ell_2$の交点の軌跡を求めなさい.
千葉大学 国立 千葉大学 2016年 第4問
$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 2)$を直径とする円周から$\mathrm{O}$を除いた部分を点$\mathrm{Q}$が動く.点$\mathrm{A}$を通り$x$軸に平行な直線と直線$\mathrm{OQ}$の交点を$\mathrm{R}$とする.点$\mathrm{Q}$を通り$x$軸と平行な直線と,点$\mathrm{R}$を通り$y$軸と平行な直線との交点を$\mathrm{P}$とする.点$\mathrm{P}$の軌跡を$C$とする.

(1)$C$の方程式を求めよ.
(2)正の実数$a$に対して,$C$と$x$軸と$2$直線$x=a$,$x=-a$によって囲まれる図形を,$x$軸の周りに$1$回転してできる立体の体積を$V(a)$とする.このとき,$\displaystyle \lim_{a \to \infty}V(a)$を求めよ.
静岡大学 国立 静岡大学 2016年 第2問
楕円$\displaystyle \frac{x^2}{9}+y^2=1$を$C$とする.また,座標平面上の点$\mathrm{P}(v,\ w)$を通り,単位ベクトル$\overrightarrow{u}=(\alpha,\ \beta)$を方向ベクトルにもつ直線$\ell$の媒介変数$t$による表示を
\[ x=v+\alpha t,\quad y=w+\beta t \]
とする.直線$\ell$は$t=t_1,\ t_2$において楕円$C$とそれぞれ共有点$\mathrm{Q}$,$\mathrm{R}$をもつとする.ただし,$\alpha>0$,$t_1 \leqq t_2$とする.このとき,次の各問に答えよ.

(1)$t_1+t_2$と$t_1t_2$を$v,\ w,\ \alpha,\ \beta$を用いてそれぞれ表せ.
(2)$|\overrightarrow{\mathrm{PQ|}} \cdot |\overrightarrow{\mathrm{PR|}}$を$v,\ w,\ \alpha,\ \beta$を用いて表せ.
(3)$\alpha=\beta$のとき,$\displaystyle |\overrightarrow{\mathrm{QR|}}=\frac{6}{5}$となる点$\mathrm{P}$の軌跡を座標平面上に図示せよ.
山形大学 国立 山形大学 2016年 第1問
$xy$平面上に点$\mathrm{A}(0,\ \sqrt{2})$,点$\mathrm{B}(0,\ -\sqrt{2})$がある.点$\mathrm{P}$は
\[ \mathrm{PB}=\mathrm{PA}+2 \]
を満たすように$xy$平面上を動き,軌跡$C$をえがく.以下の問いに答えよ.

(1)軌跡$C$の方程式を求め,点$\mathrm{P}$の$y$座標のとりうる範囲を示せ.

(2)軌跡$C$の方程式について,導関数$\displaystyle \frac{dy}{dx}$を求めよ.



$a$を実数とする.曲線$x^2+(y-a)^2=9$と軌跡$C$との共有点について,以下の問いに答えよ.


\mon[$(3)$] $a=4$のとき,共有点の個数を求めよ.
\mon[$(4)$] $a$の値によって共有点の個数がどのように変わるか調べよ.
宮城教育大学 国立 宮城教育大学 2016年 第5問
点$\mathrm{P}$は$x$座標が正または$0$の範囲で放物線$\displaystyle y=1-\frac{x^2}{2}$上を動くとする.点$\mathrm{P}$における放物線$\displaystyle y=1-\frac{x^2}{2}$の法線を$m$として,法線$m$と$x$軸とのなす角を$\displaystyle \theta \left( 0<\theta \leqq \frac{\pi}{2} \right)$とする.法線$m$上の点$\mathrm{Q}$は$\mathrm{PQ}=1$を満たし,不等式$\displaystyle y>1-\frac{x^2}{2}$の表す領域にあるとする.点$\mathrm{Q}$の軌跡を$C$とし,次の問いに答えよ.

(1)点$\mathrm{P},\ \mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)曲線$C$と$x$軸との交点の座標を求めよ.

(3)不定積分$\displaystyle \int \frac{1}{\sin \theta} \, d\theta$を$t=\cos \theta$と置換することにより求めよ.

(4)不定積分$\displaystyle \int \frac{1}{\sin^2 \theta} \, d\theta$,$\displaystyle \int \frac{1}{\sin^4 \theta} \, d\theta$を$\displaystyle t=\frac{\cos \theta}{\sin \theta}$と置換することにより求めよ.

(5)曲線$C$と$x$軸および$y$軸により囲まれた図形の面積を求めよ.
千葉大学 国立 千葉大学 2016年 第5問
$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 2)$を直径とする円周から$\mathrm{O}$を除いた部分を点$\mathrm{Q}$が動く.点$\mathrm{A}$を通り$x$軸に平行な直線と直線$\mathrm{OQ}$の交点を$\mathrm{R}$とする.点$\mathrm{Q}$を通り$x$軸と平行な直線と,点$\mathrm{R}$を通り$y$軸と平行な直線との交点を$\mathrm{P}$とする.点$\mathrm{P}$の軌跡を$C$とする.

(1)$C$の方程式を求めよ.
(2)正の実数$a$に対して,$C$と$x$軸と$2$直線$x=a$,$x=-a$によって囲まれる図形を,$x$軸の周りに$1$回転してできる立体の体積を$V(a)$とする.このとき,$\displaystyle \lim_{a \to \infty}V(a)$を求めよ.
弘前大学 国立 弘前大学 2016年 第1問
$k$を実数とする.放物線$C:y=-2x^2$と直線$\ell:y=kx-2$の交点を$\mathrm{P}$,$\mathrm{Q}$とする.

(1)点$\mathrm{P}$の$x$座標を$\alpha$,点$\mathrm{Q}$の$x$座標を$\beta$としたとき,$\alpha+\beta$と$\alpha\beta$の値を$k$を用いて表せ.
(2)点$\mathrm{P}$,$\mathrm{Q}$における$C$の接線をそれぞれ引き,その交点を$\mathrm{R}$とする.$k$がすべての実数を動くとき,点$\mathrm{R}$の軌跡を求めよ.
スポンサーリンク

「軌跡」とは・・・

 まだこのタグの説明は執筆されていません。