タグ「証明」の検索結果

12ページ目:全1924問中111問~120問を表示)
宮崎大学 国立 宮崎大学 2016年 第2問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{C}={90}^\circ$,$\mathrm{AB}:\mathrm{AC}=5:4$とする.辺$\mathrm{BC}$の点$\mathrm{C}$側の延長上に,$\mathrm{CA}=\mathrm{CD}$となる点$\mathrm{D}$をとる.辺$\mathrm{AB}$の中点を$\mathrm{E}$とし,点$\mathrm{B}$から直線$\mathrm{AD}$に下した垂線を$\mathrm{BF}$とするとき,次の各問に答えよ.

(1)$\mathrm{EF}=\mathrm{EC}$を示せ.
(2)面積比$\triangle \mathrm{ABC}:\triangle \mathrm{CEF}$を求めよ.
宮崎大学 国立 宮崎大学 2016年 第3問
$2$以上の自然数$n$と自然数$a$について,和
\[ 1 \cdot (1+a)+2 \cdot (2+a)+\cdots +(n-1) \cdot \{(n-1)+a\} \]
を$S$とおく.このとき,次の各問に答えよ.

(1)$6$と$n$が互いに素であるとき,すべての自然数$a$に対して,$S$は$n$で割り切れることを示せ.
(2)$n$を$6$で割った余りが$2$であるとき,すべての奇数$a$に対して,$S$は$n$で割り切れることを示せ.
(3)$n$を$6$で割った余りが$3$であるとき,すべての自然数$a$に対して,$S$を$n$で割った余りを,$n$を用いて表せ.ただし,求める余りは,$0$以上$n-1$以下の範囲で求めよ.
鹿児島大学 国立 鹿児島大学 2016年 第1問
次の各問いに答えよ.

(1)$\triangle \mathrm{ABC}$において$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.$\mathrm{AB}=6$,$\mathrm{BC}=5$,$\mathrm{BD}=3$のとき,辺$\mathrm{AC}$の長さを求めよ.
(2)自然数$n$が$6$と互いに素であるとき,$n^2-1$が$6$で割り切れることを示せ.
(3)$xy$平面で次の不等式で表される領域を図示せよ.
\[ |x| \leqq y \leqq 1-|x| \]
鹿児島大学 国立 鹿児島大学 2016年 第2問
次の各問いに答えよ.

(1)整式$P(x)$を$0$でない整式$Q(x)$で割った余りを$R(x)$とおく.方程式$P(x)=0$と$Q(x)=0$の共通解は方程式$Q(x)=0$と$R(x)=0$の共通解であることを示せ.また逆に方程式$Q(x)=0$と$R(x)=0$の共通解は方程式$P(x)=0$と$Q(x)=0$の共通解であることを示せ.
(2)整式$P(x),\ Q(x)$を
\[ P(x)=x^4+2x^3+x^2-1,\quad Q(x)=x^3+2x^2-1 \]
とおく.方程式$P(x)=0$と$Q(x)=0$の共通解をすべて求めよ.
鹿児島大学 国立 鹿児島大学 2016年 第3問
関数$\displaystyle f(x)=\cos x-1+\frac{x^2}{2}$について,次の各問いに答えよ.

(1)導関数$f^\prime(x)$および$2$次導関数$f^{\prime\prime}(x)$をそれぞれ求めよ.
(2)$x \geqq 0$において$f^\prime(x) \geqq 0$および$f(x) \geqq 0$が成り立つことを示せ.
(3)$f(x)$の定積分を利用して$\displaystyle \sin 1 \geqq \frac{5}{6}$を示せ.
鹿児島大学 国立 鹿児島大学 2016年 第4問
数列$\{a_n\}$を$a_1=a_2=1$,$a_{n+2}=a_{n+1}+a_n (n=1,\ 2,\ 3,\ \cdots)$によって定める.また$\alpha$を$\displaystyle \alpha=1+\frac{1}{\alpha}$を満たす正の実数とする.次の各問いに答えよ.

(1)数列$\{b_n\}$を$\displaystyle b_n=\frac{a_{n+1}}{a_n}$で定める.$b_{n+1}$を$b_n$を用いて表せ.
(2)$n=1,\ 2,\ 3,\ \cdots$に対して$b_n \geqq 1$となることを示せ.
(3)$n=1,\ 2,\ 3,\ \cdots$に対して$\displaystyle |b_{n+1|-\alpha} \leqq \frac{1}{\alpha} |b_n-\alpha|$となることを示せ.
(4)$n=1,\ 2,\ 3,\ \cdots$に対して$\displaystyle |b_n-\alpha| \leqq \frac{1}{\alpha^n}$となることを示せ.
鹿児島大学 国立 鹿児島大学 2016年 第6問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第2問
以下では$n$は$0$以上の整数とする.関係式
\[ H_0(x)=1,\quad H_{n+1}(x)=2xH_n(x)-H_n^\prime(x) \]
によって多項式$H_0(x),\ H_1(x),\ \cdots$を定め,$\displaystyle f_n(x)=H_n(x)e^{-\frac{x^2}{2}}$とおく.

(1)$-f_0^{\prime\prime}(x)+x^2f_0(x)=a_0f_0(x)$が成り立つように定数$a_0$を定めよ.
(2)$f_{n+1}(x)=xf_n(x)-f_n^\prime(x)$を示せ.
(3)$2$回微分可能な関数$f(x)$に対して,$g(x)=xf(x)-f^\prime(x)$とおく.定数$a$に対して
\[ -f^{\prime\prime}(x)+x^2f(x)=af(x) \]
が成り立つとき,
\[ -g^{\prime\prime}(x)+x^2g(x)=(a+2)g(x) \]
を示せ.
(4)$-f_n^{\prime\prime}(x)+x^2f_n(x)=a_nf_n(x)$が成り立つように定数$a_n$を定めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第3問
$4$つの複素数$z_1,\ z_2,\ z_3,\ z_4$は互いに異なり,その絶対値はすべて$1$であるとする.

(1)$z_1,\ z_2,\ z_3$を頂点とする複素数平面上の三角形が正三角形のとき,$z_1+z_2+z_3=0$となることを示せ.
(2)$z_1+z_2+z_3=0$が成り立つとき,$z_1,\ z_2,\ z_3$を頂点とする複素数平面上の三角形は正三角形であることを示せ.
(3)$z_1+z_2+z_3+z_4=0$が成り立つとき,$z_1,\ z_2,\ z_3,\ z_4$を頂点とする複素数平面上の四角形は長方形であることを示せ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第2問
以下では$n$は$0$以上の整数とする.関係式
\[ H_0(x)=1,\quad H_{n+1}(x)=2xH_n(x)-H_n^\prime(x) \]
によって多項式$H_0(x),\ H_1(x),\ \cdots$を定め,$\displaystyle f_n(x)=H_n(x)e^{-\frac{x^2}{2}}$とおく.

(1)$-f_0^{\prime\prime}(x)+x^2f_0(x)=a_0f_0(x)$が成り立つように定数$a_0$を定めよ.
(2)$f_{n+1}(x)=xf_n(x)-f_n^\prime(x)$を示せ.
(3)$2$回微分可能な関数$f(x)$に対して,$g(x)=xf(x)-f^\prime(x)$とおく.定数$a$に対して
\[ -f^{\prime\prime}(x)+x^2f(x)=af(x) \]
が成り立つとき,
\[ -g^{\prime\prime}(x)+x^2g(x)=(a+2)g(x) \]
を示せ.
(4)$-f_n^{\prime\prime}(x)+x^2f_n(x)=a_nf_n(x)$が成り立つように定数$a_n$を定めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。