タグ「自然数」の検索結果

10ページ目:全1172問中91問~100問を表示)
早稲田大学 私立 早稲田大学 2016年 第3問
次の不等式
\[ 1+\log_{\sqrt{x}} (n^2)<\log_n \sqrt{x}<\frac{1}{2}(1+\log_{\sqrt{n}} 3) \quad \cdots \quad (*) \]
を満たす自然数$n$と実数$x$について,以下の問に答えよ.

(1)次の空欄にあてはまる数を記入せよ.
$t=\log_n x$とおく.このとき,$\displaystyle 1+\log_{\sqrt{x}} (n^2)=1+\frac{[ア]}{t}$,$\log_n \sqrt{x}=[イ] \times t$である.したがって,不等式$1+\log_{\sqrt{x}}(n^2)<\log_n \sqrt{x}$が満たされることは,
$[ウ]<t<[エ]$または$t>[オ]$であることと同値である.
(2)$x$も自然数であるとき,不等式$(*)$を満たす組$(n,\ x)$をすべて求めよ.
同志社大学 私立 同志社大学 2016年 第4問
$n$を自然数,$k$を$0$以上の整数とする.また,$f(x)=|x \sin (nx)|$,$\displaystyle x_k=\frac{k \pi}{n}$,$\displaystyle \alpha_k=\frac{x_k+x_{k+1}}{2}$とする.次の問いに答えよ.

(1)$\displaystyle T_k=\int_{x_k}^{\alpha_k} f(x) \, dx$とする.$T_k$を$n,\ k$を用いて表し,極限$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n T_k$を求めよ.
(2)$x_k \leqq x \leqq x_{k+1}$の範囲で,関数$f(x)$が最大値をとるときの$x$の値を$\beta_k$とする.$\displaystyle U_k=\int_{x_k}^{\beta_k} f(x) \, dx$とおくと,ある定数$b$を用いて$\displaystyle U_k=\frac{k \pi+b |\sin (n \beta_k)|}{n^2}$と表される.定数$b$の値を求めよ.また,極限$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n U_k$を求めよ.
(3)$x_k \leqq x \leqq \alpha_k$の範囲で,関数$g(x)=|x \cos (nx)|$が最大値をとるときの$x$の値を$\gamma_k$とする.この$\gamma_k$と$(2)$の$\beta_k$に対して,$\displaystyle V_k=\int_{\gamma_k}^{\beta_k} f(x) \, dx$とおく.極限$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n V_k$を求めよ.
日本医科大学 私立 日本医科大学 2016年 第1問
次の各問いに答えよ.

(1)円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=1+\sqrt{3}$,$\mathrm{BC}=\mathrm{CD}$,$\mathrm{DA}=2$,また$\angle \mathrm{DAB}={60}^\circ$である.四角形$\mathrm{ABCD}$の対角線の交点を$\mathrm{P}$,$\angle \mathrm{BCD}$の二等分線と辺$\mathrm{AB}$との交点を$\mathrm{Q}$,$\mathrm{BD}$と$\mathrm{CQ}$の交点を$\mathrm{R}$とするとき,以下の各問いに答えよ.なお数値の分母は有理化すること.

(i) 辺$\mathrm{BD}$の長さを求めよ.
(ii) $\angle \mathrm{ABD}$の大きさを求めよ.
(iii) 辺$\mathrm{BP}$の長さを求めよ.
\mon[$\tokeishi$] 三角形$\mathrm{PQR}$の内接円の半径を求めよ.

(2)自然数$n$に対して,$n$を$3$で割った余りを$a_n$,$n^2$を$3$で割った余りを$b_n$とするとき,以下の各問いに答えよ.

(i) $\displaystyle \sum_{n=1}^{2016} (a_n+b_n)$の値を求めよ.
(ii) $\displaystyle \sum_{n=1}^m (a_{n+2}+b_{n+1}+2a_n)=2016$を満たす自然数$m$の値を求めよ.

(3)$\mathrm{O}$を原点とする座標平面上に,次のような双曲線$C$と直線$\ell_k$($k$は実数の定数)が与えられているとき,以下の各問いに答えよ.
\[ C:\frac{x^2}{4}-\frac{y^2}{3}=-1 \qquad \ell_k:3x-4y+k=0 \]

(i) $C$と$\ell_k$が接するような$k$の値を求めよ.
(ii) $C$上の点と直線$\ell_0:3x-4y=0$の距離の最小値を求めよ.
南山大学 私立 南山大学 2016年 第1問
$[ ]$の中に答を入れよ.

(1)$2$つの関数$f(x)=|x|$,$g(x)=ax+a^2+3a+1$がある.$g(0)>f(0)$となるとき,$a$のとりうる値の範囲は$[ア]$である.また,$y=f(x)$のグラフと$y=g(x)$のグラフが$2$つの交点をもつとき,$a$のとりうる値の範囲は$[イ]$である.
(2)次のデータは,$5$個の乾電池について,ある実験で用いたときの持続時間$x$を調べたものである.
\[ 103, 93, 98, 88, 108 \text{(時間)} \]
$x$の平均値は$[ウ]$時間であり,$x$の分散を求めると$[エ]$である.
(3)$a_1=99$,$a_{n+1}=2a_n-100 (n=1,\ 2,\ \cdots)$で定義される数列$\{a_n\}$について,一般項$a_n$を$n$の式で表すと$a_n=[オ]$であり,$a_n<0$を満たす最小の自然数$n$の値を求めると$n=[カ]$である.
(4)$x$と$y$は$0<x<y$,$\log_2 x+2 \log_4 y=1$,$(\log_2 x)(\log_4 y)=-6$を満たす.$s=\log_2 x$,$t=\log_2 y$とおき$s+t$と$st$の値を求めると$(s+t,\ st)=[キ]$である.また,$x$と$y$の値を求めると$(x,\ y)=[ク]$である.
南山大学 私立 南山大学 2016年 第1問
次の$[ ]$の中に答を入れよ.

(1)放物線$C_1:y=x^2+ax+8$を$x$軸方向に$5$だけ平行移動した放物線$C_2$の方程式は$y=[ア]$である.$C_2$を$y$軸に関して対称移動した放物線が$C_1$に一致するとき,定数$a$の値を求めると$a=[イ]$である.
(2)$455$と$273$の最大公約数は$[ウ]$である.また,方程式$455x+273y=2821$を満たす自然数の組$(x,\ y)$をすべて求めると$(x,\ y)=[エ]$である.
(3)$0<\theta<\pi$とする.方程式$\cos 2\theta-\sin \theta=0$を解くと$\theta=[オ]$であり,方程式$\sin 2\theta-\cos 2\theta-\sqrt{6} \sin \theta+1=0$を解くと$\theta=[カ]$である.
(4)$3$つのさいころを同時に投げる.このとき,出る目の積が奇数になる確率は$[キ]$であり,出る目の積が$4$以上の偶数になる確率は$[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の問いに答えよ.

(1)整式$P(x)$は実数を係数にもつ$x$の$3$次式であり,$x^3$の係数は$1$である.$P(x)$を$x-7$で割ると$8$余り,$x-9$で割ると$12$余る.方程式$P(x)=0$は$a+bi$を解に持つ.$a,\ b$は$1$桁の自然数であり,$i$は虚数単位とする.
ただし$a,\ b$の組み合わせは,$2a+b$が連続する$2$つの整数の積の値と等しくなるもののうち,$a-b$が最大となるものとする.このとき,

(i) 整式$P(x)$を$(x-7)(x-9)$で割ると,余りは$[$1$]x-[$2$]$である.
(ii) $a=[$3$]$,$b=[$4$]$であり,方程式$P(x)=0$の実数解は$[$5$]$である.

(2)$xy$平面上に曲線$C_1:y=-x^2-x+8$がある.$C_1$上の動点$\mathrm{A}$を点$(1,\ 2)$に関して対称移動した点$\mathrm{B}$の軌跡を$C_2$とする.
$C_1$と$C_2$の$2$つの交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とし,また,$C_1,\ C_2$と直線$x=k$との交点をそれぞれ$\mathrm{R}$,$\mathrm{S}$とする.ただし,$k$は$\alpha<k<\beta$を満たす実数とする.このとき,

(i) $C_2$の方程式は$y=x^2-[$6$]x+[$7$]$である.

(ii) 三角形$\mathrm{QRS}$の面積は$\displaystyle k=\frac{[$8$]}{[$9$]}$で最大となる.


(3)$xy$平面上に,原点$\mathrm{O}$を中心とする単位円$C$と,$y$軸の正の部分を始線として点$\mathrm{O}$を中心に回転する$2$つの動径$L_1,\ L_2$がある.円$C$と$L_1,\ L_2$との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.動径$L_1,\ L_2$の表す角をそれぞれ$\theta_1,\ \theta_2$とおき,$\theta_1=2\pi t,\ \theta_2=-\pi t$とする.ただし$t$は,$t \geqq 0$を満たす実数である.このとき,

(i) 点$\mathrm{P}$と点$\mathrm{Q}$が一致する$t$のうち,$t=0$を除く最小の$t$の値は$\displaystyle \frac{[$10$]}{[$11$]}$である.

(ii) 点$\mathrm{P}$の$y$座標と点$\mathrm{Q}$の$y$座標の和の最小値は$\displaystyle \frac{[$12$][$13$]}{[$14$]}$である.


(4)直角三角形$\mathrm{AOB}$($\angle \mathrm{AOB}={90}^\circ$)に内接する半径$r$の円の中心を$\mathrm{P}$とする.辺$\mathrm{AB}$と円の接点を$\mathrm{Q}$とし,線分$\mathrm{AQ}$の長さを$a$,線分$\mathrm{BQ}$の長さを$b$とする.三角形$\mathrm{AOB}$に対して,自然数$l,\ m,\ n (n<m<l)$は,$l \overrightarrow{\mathrm{OP}}+m \overrightarrow{\mathrm{AP}}+n \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たす.このとき,

(i) 三角形$\mathrm{AOB}$の$3$辺の長さの合計は$[$15$]a+[$16$]b+[$17$]r$である.

(ii) $l=17$のとき,$m=[$18$][$19$]$,$n=[$20$]$であり,$\displaystyle \frac{a}{b}=\frac{[$21$]}{[$22$][$23$]}$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$チームが試合を行う.第$1$試合に$\mathrm{A}$と$\mathrm{B}$が対戦する.第$2$試合以降は,直前の試合に勝ったチームが残りの$1$チームと対戦することを繰り返す.最初に$2$連勝したチームを優勝とする.いずれのチームも試合に勝つ確率は$\displaystyle \frac{1}{2}$であり,各試合に引き分けはないものとする.このとき,

(1)第$5$試合で$\mathrm{A}$が優勝する確率は$\displaystyle \frac{[$41$]}{[$42$][$43$]}$であり,第$6$試合で$\mathrm{C}$が優勝する確率は$\displaystyle \frac{[$44$]}{[$45$][$46$]}$である.
(2)第$6$試合もしくはそれ以前に$\mathrm{B}$,$\mathrm{C}$が優勝する確率は,それぞれ$\displaystyle \frac{[$47$][$48$]}{[$49$][$50$]}$,$\displaystyle \frac{[$51$]}{[$52$][$53$]}$である.

(3)$\mathrm{A}$が第$1$試合で勝ち,かつ$\mathrm{A}$が第$3n$試合もしくはそれ以前に優勝する確率を$n$の式で表すと,$\displaystyle \frac{[$54$]}{[$55$]} \left\{ [$56$]-\left( \frac{[$57$]}{[$58$]} \right)^n \right\}$である.ただし,$n$は自然数とする.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
次の$[ ]$にあてはまる最も適当な数または式を記入しなさい.

(1)円$x^2+y^2-6x+12y+25=0$を$C_1$とし,中心が原点で,円$C_1$に外接する円を$C_2$とする.このとき円$C_2$の半径は$[ケ]$である.また$2$つの円$C_1$,$C_2$の共有点の座標は$[コ]$である.
(2)不等式$3^{2x}+1<3^{x+2}+3^{x-2}$を解くと,$[サ]<x<[シ]$である.
(3)自然数$n$に対して$m \leqq \log_2 n<m+1$を満たす整数$m$を$a_n$で表すことにする.このとき$a_{2016}=[ス]$である.また,自然数$k$に対して$a_n=k$を満たす$n$は全部で$[セ]$個あり,そのような$n$のうちで最大のものは$n=[ソ]$である.さらに$\displaystyle \sum_{n=1}^{2016}a_n=[タ]$である.
(ヒント:$2^{10}=1024$)
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
以下の問いに答えよ.

(1)$k$を自然数とする.数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\{S_n\}$が初項$k$,公比$k$の等比数列であるとする.
\begin{itemize}
$k=3$の場合,$a_n \geqq 5000$を満たすのは$n \geqq [$1$]$のときである.
$a_n$が$100$の倍数となる$n$が存在するような$10$以下の自然数$k$は$[$2$]$つあり,このとき,$a_n$が$100$の倍数となるのは$n \geqq [$3$]$のときである.
\end{itemize}
(2)$\alpha$を$0 \leqq \alpha<2\pi$を満たす定数とする.実数$t$が$0 \leqq t \leqq 2\pi$の範囲で変化するとき,座標平面上の点$\mathrm{P}(\sin t,\ \sin (t+\alpha))$の軌跡を$\mathrm{T}$とする.
\begin{itemize}
$\mathrm{T}$が線分となるような$\alpha$の値をすべて記せ.
$\mathrm{T}$が原点を中心とする円となるような$\alpha$の値をすべて記せ.
\end{itemize}
早稲田大学 私立 早稲田大学 2016年 第2問
次の問に答えよ.

(1)負でない実数の数列$a_1,\ a_2,\ \cdots$は,すべての$n=1,\ 2,\ \cdots$に対して
\[ a_{n+1}=\sqrt{a_n} \]
を満たしているとする.このとき,次の各問いに答えよ.

(i) $a_1=256$であるとき,$a_4$は$[コ]$であり,$2^{-\frac{1}{100}} \leqq a_n \leqq 2^{\frac{1}{100}}$を満たす最小の自然数$n$は$[サ]$である.
(ii) $\displaystyle a_1=\frac{1}{256}$であるとき,$a_4$は$[シ]$であり,$2^{-\frac{1}{100}} \leqq a_n \leqq 2^{\frac{1}{100}}$を満たす最小の自然数$n$は$[ス]$である.
(iii) $a_1=a_2=a_3=\cdots$となるような初項$a_1$は$[セ]$個存在する.

(2)$1$つのサイコロを何回か投げる場合を考える.$4$回投げたとき,$1$または$2$の目が奇数回出る確率は$[ソ]$である.また,$n$回投げたときに$1$または$2$の目が奇数回出る確率を$p_n$とするとき,$p_n$を$n$の式で表すと$[タ]$である.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。