タグ「範囲」の検索結果

8ページ目:全1424問中71問~80問を表示)
福岡教育大学 国立 福岡教育大学 2016年 第1問
次の問いに答えよ.

(1)$0 \leqq x \leqq 2\pi$のとき
\[ \cos 2x+\cos x+1>0 \]
を満たす$x$の範囲を求めよ.
(2)$a^2b-3a^2+5b=21$を満たす整数の組$(a,\ b)$をすべて求めよ.
(3)正方形の各辺を$n$等分した点から向かい合う辺に垂線を下ろす.このとき,正方形の$4$つの辺とこれらの垂線を利用してできる長方形のうち,正方形でないものの個数を$n$を用いて表せ.
宇都宮大学 国立 宇都宮大学 2016年 第4問
座標平面上の曲線$y^2-2x-2=0$と直線$\displaystyle x+y=\frac{1}{2}$で囲まれた図形を$D$とする.このとき,次の問いに答えよ.

(1)座標平面に$D$を図示せよ.
(2)$D$の面積を求めよ.
(3)点$\mathrm{P}(x,\ y)$が$D$の内部および境界線上を動くとき,$3x+2y$の値がとりうる範囲を求めよ.
山梨大学 国立 山梨大学 2016年 第4問
$y=e^{-\pi x} \sin (\pi x)$で定められた曲線を$C$とする.

(1)$0 \leqq x \leqq 2$の範囲で$C$の概形をかけ.ただし,凹凸を調べる必要はない.
(2)$n$を自然数とする.$C$の$n-1 \leqq x \leqq n$の部分と$x$軸で囲まれた図形の面積$S_n$を求めよ.
(3)$(2)$の$S_n$について,$\displaystyle \sum_{n=1}^\infty S_n$の値を求めよ.
山梨大学 国立 山梨大学 2016年 第3問
$xy$平面上に$5$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 1)$,$\mathrm{B}(1,\ 0)$,$\displaystyle \mathrm{P} \left( \frac{1}{2},\ t \right)$ \ $\displaystyle \left( \frac{1}{2} \leqq t<1 \right)$,$\displaystyle \mathrm{Q}(\alpha,\ 0)$ \ $\displaystyle \left( \frac{1}{2} \leqq \alpha \leqq 1 \right)$がある.$\mathrm{A}$,$\mathrm{P}$を通る直線を$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)$\triangle \mathrm{APB}$において,$\angle \mathrm{APB} \leqq {90}^\circ$を示せ.
(3)$\ell$に垂直で$\mathrm{Q}$を通る直線を$m$とする.$\ell$と$m$の交点を$\mathrm{R}$とするとき,$\mathrm{R}$の$x$座標を$\alpha$と$t$を用いた式で表せ.
(4)$(3)$の$\mathrm{R}$が線分$\mathrm{PA}$上にあるための$\alpha$の範囲を$t$を用いた式で表せ.
茨城大学 国立 茨城大学 2016年 第3問
$a$を実数の定数とする.$\displaystyle f(x)=x^3-ax^2+\frac{1}{3}(a^2-4)x$とおくとき,以下の各問に答えよ.

(1)定数$a$の値にかかわらず関数$y=f(x)$は必ず極値をもつことを証明せよ.
(2)$3$次方程式$f(x)=0$が$-1<x<2$の範囲に相異なる$3$個の実数解をもつように,定数$a$の値の範囲を定めよ.
茨城大学 国立 茨城大学 2016年 第4問
$\displaystyle \alpha=\frac{\sqrt{2}+\sqrt{2}i}{\sqrt{3}+i}$のとき,以下の各問に答えよ.ただし,$i$は虚数単位である.

(1)$\alpha$の絶対値を$r$,偏角を$\theta$とする.$r$と$\theta$の値をそれぞれ求めよ.ただし,偏角$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(2)$\alpha^{20}$を計算せよ.
(3)複素数平面上で複素数$z$の表す点$\mathrm{P}$を点$\mathrm{P}(z)$と表す.点$\mathrm{A}(\alpha^{20})$,$\mathrm{B}(\alpha^{36})$,$\mathrm{C}(\beta)$を頂点とする正三角形$\mathrm{ABC}$がある.このとき,複素数$\beta$をすべて求めよ.
長崎大学 国立 長崎大学 2016年 第3問
以下の問いに答えよ.

(1)関数
\[ y=\frac{e^x-e^{-x}}{e^x+e^{-x}} \]
の増減を調べ,$y$のとり得る値の範囲を求めよ.また,この関数の逆関数を求めよ.
(2)定積分
\[ I_n=\int_0^{\frac{\pi}{4}} \tan^n x \, dx \]
について,$I_1,\ I_2,\ I_3$を求めよ.
(3)関数
\[ f(x)=\frac{1+\log x}{x} \quad (x>0) \]
がある.曲線$C:y=f(x)$の変曲点を$\mathrm{P}(a,\ f(a))$とする.曲線$C$と直線$x=a$,および$x$軸で囲まれた図形の面積$S$を求めよ.
長崎大学 国立 長崎大学 2016年 第3問
以下の問いに答えよ.

(1)関数
\[ y=\frac{e^x-e^{-x}}{e^x+e^{-x}} \]
の増減を調べ,$y$のとり得る値の範囲を求めよ.また,この関数の逆関数を求めよ.
(2)定積分
\[ I_n=\int_0^{\frac{\pi}{4}} \tan^n x \, dx \]
について,$I_1,\ I_2,\ I_3$を求めよ.
(3)関数
\[ f(x)=\frac{1+\log x}{x} \quad (x>0) \]
がある.曲線$C:y=f(x)$の変曲点を$\mathrm{P}(a,\ f(a))$とする.曲線$C$と直線$x=a$,および$x$軸で囲まれた図形の面積$S$を求めよ.
愛媛大学 国立 愛媛大学 2016年 第3問
$z_0$を虚数単位$i$と異なる複素数とする.複素数$z_n$を
\[ z_n=i+\frac{\sqrt{2}(z_{n-1}-i)(1+i)}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.

(1)すべての自然数$n$に対し$z_n \neq i$であることを示せ.
(2)$\displaystyle \frac{z_n-i}{z_{n-1}-i}$の絶対値$r$と偏角$\theta$を求めよ.ただし,$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(3)$z_m=z_0$となる最小の自然数$m$を求めよ.
(4)複素数平面上において$z_n$の表す点を$\mathrm{P}_n$とする.$(3)$で求めた$m$に対し$m$本の線分$\mathrm{P}_0 \mathrm{P}_1$,$\mathrm{P}_1 \mathrm{P}_2$,$\cdots$,$\mathrm{P}_{m-1} \mathrm{P}_m$で囲まれる図形の面積を$S$とする.$z_0=1-i$のとき$S$の値を求めよ.
旭川医科大学 国立 旭川医科大学 2016年 第3問
$a$を正の実数とする.点$\mathrm{P}$は曲線$C_a:y=e^{ax}$上を,点$\mathrm{Q}$は直線$y=x$をそれぞれ動く.このとき,次の問いに答えよ.

(1)曲線$C_a$と直線$y=x$が共有点をもたないような$a$の値の範囲を求めよ.
(2)$(1)$で求めた範囲にある$a$に対して,線分$\mathrm{PQ}$の長さの最小値を$d(a)$とする.$\mathrm{PQ}$の長さが$d(a)$となる曲線$C_a$上の点を$\mathrm{P}_a$とする.

(i) $d(a)$を求めよ.
(ii) 点$\mathrm{P}_a$における曲線$C_a$の接線の傾きを求めよ.
(iii) $a$が$(1)$で求めた範囲を動くときの点$\mathrm{P}_a$の軌跡を求め,その概形を図示せよ.

(3)$d(a)$の最大値と,そのときの$a$の値を求めよ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。