タグ「等式」の検索結果

5ページ目:全278問中41問~50問を表示)
大阪府立大学 公立 大阪府立大学 2016年 第3問
以下の問いに答えよ.

(1)次の等式が成り立つことを示せ.
\[ \cos (\alpha+\beta) \sin \alpha-\cos \alpha \sin (\alpha-\beta)=\cos 2\alpha \sin \beta \]
(2)$k,\ n$を自然数とし,$\theta$は$\sin \theta \neq 0$を満たすとする.$(1)$の等式で$\alpha=k \theta$,$\beta=\theta$とおくことにより次の等式が成り立つことを示せ.
\[ \sum_{k=1}^n \cos 2k \theta=\frac{\cos (n+1) \theta \sin n \theta}{\sin \theta} \]
(3)$\displaystyle \sum_{k=1}^{100} \cos^2 \frac{k \pi}{100}$の値を求めよ.
首都大学東京 公立 首都大学東京 2016年 第2問
$\displaystyle 0 \leqq x<\frac{\pi}{2}$の範囲で定義された関数$f(x)$は次の等式をみたすとする.
\[ f(x)=2x-\tan x+\int_0^{\frac{\pi}{6}} f(t) \cos t \, dt \]
以下の問いに答えなさい.

(1)不定積分$\displaystyle \int x \cos x \, dx$を求めなさい.
(2)$f(0)$の値を求めなさい.
(3)$\displaystyle 0 \leqq x<\frac{\pi}{2}$における$f(x)$の最大値を求めなさい.
公立はこだて未来大学 公立 公立はこだて未来大学 2016年 第5問
$n$を自然数とする.以下の問いに答えよ.

(1)三角関数の加法定理を用いて次の等式を示せ.
\[ 2 \cos \alpha \sin \beta=\sin (\alpha+\beta)-\sin (\alpha-\beta) \]
(2)数学的帰納法によって,次の等式を証明せよ.
\[ 2 \sin \frac{\theta}{2} \sum_{l=1}^n \cos l \theta=\sin \left( n+\frac{1}{2} \right) \theta-\sin \frac{\theta}{2} \]
(3)$m$を整数とする.$\theta \neq 2m\pi$のとき,次の不等式が成り立つことを証明せよ.ただし,等号が成立する条件は調べなくてよい.
\[ |\sum_{l=1|^n \cos l \theta} \leqq \frac{1}{2} \left( 1+{|\sin \displaystyle\frac{\theta|{2}}}^{-1} \right) \]
富山県立大学 公立 富山県立大学 2016年 第3問
次の問いに答えよ.

(1)$x>0$,$y>0$のとき,不等式$\displaystyle \frac{x+y}{2} \geqq \sqrt{xy}$を証明せよ.また,等号が成り立つときを調べよ.

(2)$a>0$,$b>0$,$c>0$で,$a \neq 1$,$c \neq 1$のとき,等式$\displaystyle \log_a b=\frac{\log_c b}{\log_c a}$を証明せよ.

(3)$p>1$,$q>1$のとき,不等式$\log_p q+\log_q p \geqq 2$を証明せよ.また,等号が成り立つときを調べよ.
横浜市立大学 公立 横浜市立大学 2016年 第3問
関数$y=\tan x$は,区間$\displaystyle -\frac{\pi}{2}<x<\frac{\pi}{2}$で単調増加である.したがって,この区間で逆関数を作ることが出来る.それを
\[ y=\phi(x) \quad (-\infty<x<\infty) \]
と書く(この逆関数を$\mathrm{Arctan} \ x$と書く参考書もある).正確を期すために,$\displaystyle -\frac{\pi}{2}<\phi(x)<\frac{\pi}{2}$としておく.以下の問いに答えよ.ただし,「$-\infty<x<\infty$」は「$x$は実数」という意味である.

(1)関数$f(x)$を
\[ f(x)=\frac{1}{4 \sqrt{2}} \log \frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1}+\frac{1}{2 \sqrt{2}} \left\{ \phi(\sqrt{2}x+1)+\phi(\sqrt{2}x-1) \right\} \]
とおく.$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)積分
\[ \int_0^1 \frac{1}{x^4+1} \, dx \]
を求めたい.正確な値は求められないので,以下のようにする.即ち,関数$G(x)$で
\[ \int_0^1 \frac{1}{x^4+1} \, dx=G(\sqrt{2}+1) \]
となる関数を求めよ.
(3)積分の等式
\[ \int_0^\pi \frac{x \sin x}{1+\cos^4 x} \, dx=\pi \int_0^{\frac{\pi}{2}} \frac{\sin x}{1+\cos^4 x} \, dx \]
を示せ.
(4)積分
\[ \int_0^{\pi} \frac{x \sin x}{1+\cos^4 x} \, dx \]
を求めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2016年 第4問
次の問いに答えよ.

(1)異なる複素数$\alpha,\ \beta$に対して,$\displaystyle \frac{z-\alpha}{z-\beta}$が純虚数となるような$z$は,複素数平面上でどのような図形を描くか.
(2)$2$次方程式$x^2-2x+4=0$の解を$\alpha,\ \beta$とする.ただし,$\alpha$の虚部は正であるとする.等式
\[ \arg{\displaystyle\frac{z-\alpha^2}{z-\beta^2}}=\frac{\pi}{2} \]
をみたす$z$が,複素数平面上で描く図形を図示せよ.
会津大学 公立 会津大学 2016年 第3問
関数$\displaystyle y=\frac{1-x^2}{1+x^2}$のグラフと$x$軸によって囲まれた部分を$A$とする.このとき,以下の空欄をうめよ.

(1)等式$\displaystyle \frac{1-x^2}{1+x^2}=a+\frac{b}{1+x^2}$が,$x$についての恒等式となるように定数$a,\ b$を定めると,$a=[イ]$,$b=[ロ]$である.
(2)$A$の面積は$[ハ]$である.
(3)$A$を$y$軸のまわりに$1$回転してできる立体の体積は$[ニ]$である.
会津大学 公立 会津大学 2016年 第6問
$n$を自然数とする.関数$f(x)=e^x \sin x$の$n$次導関数$f^{(n)}(x)$について,次の等式がなりたつことを,数学的帰納法を用いて証明せよ.
\[ f^{(n)}(x)=2^{\frac{n}{2}} e^x \sin \left( x+\frac{n\pi}{4} \right) \]
札幌医科大学 公立 札幌医科大学 2016年 第1問
次の問に答えよ.

(1)空間上の$3$点を$\mathrm{A}(0,\ 1,\ 3)$,$\mathrm{B}(-1,\ 3,\ 2)$,$\mathrm{C}(1,\ 2,\ -1)$とする.この$3$点を通る平面上に$\mathrm{D}(a,\ b,\ -1)$があるとき,$a$と$b$の関係式を求めよ.
(2)数列$\{a_n\}$は
\[ a_1=a>0,\quad a_{n+1}=16{a_n}^3 \quad (n=1,\ 2,\ \cdots) \]
をみたすものとする.

(i) 数列$\{b_n\}$を$b_n=\log_2 a_n$とするとき,$\{b_n\}$の一般項を$a$と$n$を用いて表せ.
(ii) 数列$\{a_n\}$の一般項を$a$と$n$を用いて表せ.
(iii) すべての$n$について$a_n=a$をみたすような$a$の値を求めよ.

(3)複素数平面において,等式$2 |z-4|=3 |z-3i|$をみたす点$z$の全体はどのような図形を表すか.ただし$i$は虚数単位とする.
一橋大学 国立 一橋大学 2015年 第2問
座標平面上の原点を$\mathrm{O}$とする.点$\mathrm{A}(a,\ 0)$,点$\mathrm{B}(0,\ b)$および点$\mathrm{C}$が
\[ \mathrm{OC}=1,\quad \mathrm{AB}=\mathrm{BC}=\mathrm{CA} \]
を満たしながら動く.

(1)$s=a^2+b^2,\ t=ab$とする.$s$と$t$の関係を表す等式を求めよ.
(2)$\triangle \mathrm{ABC}$の面積のとりうる値の範囲を求めよ.
スポンサーリンク

「等式」とは・・・

 まだこのタグの説明は執筆されていません。