タグ「空欄補充」の検索結果

20ページ目:全1740問中191問~200問を表示)
福岡大学 私立 福岡大学 2016年 第1問
次の$[ ]$をうめよ.

(1)$2$次関数$y=f(x)$のグラフが$3$点$(-1,\ -1)$,$(2,\ 2)$,$(3,\ -5)$を通るとき,$f(x)=[ ]$であり,$f(x)$の区間$-3 \leqq x \leqq 4$における最小値は$[ ]$である.
(2)$0 \leqq x<2\pi$のとき,関数$f(x)=\cos 2x+2 \cos x$の最大値と最小値の差は$[ ]$であり,$f(x)$が最小値をとる$x$の値は$[ ]$である.
(3)赤球$3$個,白球$4$個,青球$5$個が入っている袋から,$3$個の球を$1$個ずつ取り出すとき,$3$個とも白球である確率は$[ ]$であり,$3$個目が白球である確率は$[ ]$である.ただし,取り出した球はもとに戻さないものとする.
福岡大学 私立 福岡大学 2016年 第2問
次の$[ ]$をうめよ.

(1)方程式$\log_2 (5-x)=\log_8 (x^2-15)$を解くと$[ ]$である.また,変数$a,\ b$が$\log_9 a=(\log_3 b)^2$をみたすとき$\displaystyle \left( \frac{a}{b} \right)^8$の最小値は$[ ]$である.
(2)$a_1=-30$,$a_{n+1}-a_n=-2n+18$で定められる数列$\{a_n\}$について,$a_n>0$である$n$の個数を求めると$[ ]$であり,$\displaystyle S_n=\sum_{k=1}^n a_k$の最大値を求めると$[ ]$である.
広島経済大学 私立 広島経済大学 2016年 第4問
円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\mathrm{CD}=3$,$\angle \mathrm{ABC}={60}^\circ$である.このとき,次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)対角線$\mathrm{AC}$の長さは$[$31$]$である.
(2)辺$\mathrm{AD}$の長さは$[$32$]$である.

(3)円の半径は$\displaystyle \frac{[$33$] \sqrt{[$34$]}}{[$35$]}$である.

(4)四角形$\mathrm{ABCD}$の面積は$\displaystyle \frac{[$36$] \sqrt{[$37$]}}{[$38$]}$である.
神奈川大学 私立 神奈川大学 2016年 第1問
次の空欄を適当に補え.

(1)方程式$x^2+y=63$を満たす自然数の組$(x,\ y)$は$[ ]$組ある.
(2)ベクトル$\overrightarrow{a}=(1,\ 2)$,$\overrightarrow{b}=(-2,\ 3)$,$\overrightarrow{c}=(2,\ -1)$がある.$\overrightarrow{a}+t \overrightarrow{b}$が$\overrightarrow{c}$と平行となるのは$t=[ ]$のときである.
(3)$0 \leqq x<2\pi$とする.不等式$\sqrt{3} \sin x+\cos x>\sqrt{3}$を解くと,$x$の値の範囲は$[ ]$である.
(4)$S=1+2r^2+3r^4+4r^6+\cdots +10r^{18}$とする.$r=\sqrt{2}$のとき,$S$の値を求めると$[ ]$である.
(5)赤,青,黄のカードが$2$枚ずつある.この$6$枚のカードを$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人に$2$枚ずつ配るとき,どの人の$2$枚についてもその色が異なる確率は$[ ]$である.
(6)複素数平面で,方程式
\[ z \overline{z}-iz+i \overline{z}-9=0 \]
で定まる円の中心を表す複素数は$[ ]$であり,半径は$[ ]$である.ただし,$i$は虚数単位である.
千葉工業大学 私立 千葉工業大学 2016年 第1問
次の各問に答えよ.

(1)$\displaystyle \frac{3-i}{3+i}=\frac{[ア]-[イ]i}{[ウ]}$(ただし,$i^2=-1$)である.
(2)$x$の$2$次方程式$x^2-2(k-4)x+2k=0$が重解をもつような定数$k$の値は小さい順に$[エ]$,$[オ]$である.
(3)$2$次関数$\displaystyle y=\frac{1}{3}x^2-6x+35$のグラフは,放物線$\displaystyle y=\frac{1}{3}x^2$を$x$軸方向に$[カ]$,$y$軸方向に$[キ]$だけ平行移動した放物線である.
(4)$10$個の値$1,\ 3,\ 8,\ 5,\ 8,\ [ク],\ 3,\ 7,\ 7,\ 1$からなるデータの平均値は$5$,最頻値は$[ケ]$,中央値は$[コ]$である.
(5)$x>0$において,$\displaystyle \left( x-\frac{1}{2} \right) \left( 2-\frac{9}{x} \right)$は$\displaystyle x=\frac{[サ]}{[シ]}$のとき,最小値$[スセ]$をとる.
(6)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$から異なる$3$個の数字を使ってできる$3$桁の整数は$[ソタ]$個あり,そのうち偶数のものは$[チツ]$個ある.
(7)$0 \leqq \theta<2\pi$とする.$\displaystyle \cos 3\theta=\frac{1}{2}$をみたす$\theta$のうち,最大のものは$\displaystyle \frac{[テト]}{[ナ]} \pi$である.
(8)$\displaystyle \int_{-2}^1 (x^3-3x+2) \, dx=\frac{[ニヌ]}{[ネ]}$である.
千葉工業大学 私立 千葉工業大学 2016年 第2問
次の各問に答えよ.

(1)実数$x,\ y$は$x \geqq \sqrt[3]{2}$,$y \geqq 32$,$x^6y=256$をみたしている.$F=(\log_{16}x)(\log_2 y)$は,$t=\log_2 x$とおくと
\[ F=\frac{[アイ]}{[ウ]}t^2+[エ]t \]
と表される.$t$の取り得る値の範囲は$\displaystyle \frac{[オ]}{[カ]} \leqq t \leqq \frac{[キ]}{[ク]}$であり,$F$の最大値は$\displaystyle \frac{[ケ]}{[コ]}$,最小値は$\displaystyle \frac{[サ]}{[シ]}$である.
(2)$x$の関数$f(x)=x(x^2+ax+b)$($a,\ b$は定数)がある.$xy$平面において,原点$\mathrm{O}$と点$\mathrm{A}(5,\ f(5))$を結ぶ線分$\mathrm{OA}$を$4:1$に内分する点を$\mathrm{B}$とする.$\mathrm{B}$の$x$座標は$[ス]$であり,$\mathrm{B}$が曲線$y=f(x)$上にあるとき,$a=[セソ]$である.さらに,$f(x)$が$x=[ス]$で極値をとるとき,$b=[タチ]$であり,$f(x)$の極大値は$[ツテ]$である.
千葉工業大学 私立 千葉工業大学 2016年 第3問
次の各問に答えよ.

(1)三角形$\mathrm{OAB}$において,$\mathrm{OA}=9$,$\mathrm{OB}=7$,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=57$である.$\mathrm{AB}=[ア]$であり,頂点$\mathrm{O}$から直線$\mathrm{AB}$に下ろした垂線を$\mathrm{OP}$とすると
\[ \overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OA}}+\frac{[イ]}{[ウ]} \overrightarrow{\mathrm{AB}} \]
である.$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{Q}$とすると,$\displaystyle \mathrm{AQ}=\frac{[エ]}{[オ]}$であり,$\displaystyle \mathrm{PQ}=\frac{[カキ]}{[ク]}$である.

(2)$xy$平面上に円$K:x^2+y^2-4x-2y+4=0$と直線$\ell:y=ax+a+1$がある.$\ell$は定数$a$の値によらず,点$\mathrm{P}([ケコ],\ [サ])$を通る.
$a=0$のとき,$\ell$と$K$との$2$つの交点を$\mathrm{A}$,$\mathrm{B}$とすると,$\mathrm{PA} \cdot \mathrm{PB}=[シ]$である.
また,$\ell$が$K$と$2$点$\mathrm{C}$,$\mathrm{D}$で交わり,$\mathrm{PC}:\mathrm{PD}=2:3$であるとき,
\[ \mathrm{CD}=\frac{[ス] \sqrt{[セ]}}{[ソ]} \]
であり,$\displaystyle a=\pm \frac{\sqrt{[タ]}}{[チ]}$である.
広島経済大学 私立 広島経済大学 2016年 第2問
次の空欄に当てはまる最も適切な数値を記入せよ.

(1)$6$人を$2$つの部屋$\mathrm{A}$,$\mathrm{B}$に入れる方法は$[$10$]$通りある.ただし,$1$人も入らない部屋があってもよいものとする.
(2)$6$人を$3$つの部屋$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に$2$人ずつ入れる方法は$[$11$]$通りある.
(3)$6$人を$2$人ずつの$3$組に分ける方法は$[$12$]$通りある.
(4)$6$人が男子$4$人,女子$2$人から成るとする.このとき,$3$つの部屋$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に$2$人ずつ入れる場合,女子$2$人が同じ部屋に入る方法は$[$13$]$通りある.
広島女学院大学 私立 広島女学院大学 2016年 第2問
次の各問いに答えよ.

(1)$2x^2+7x+3<0$を満たすような$2x^2+3x-2=0$の解を求めよ.$[$7$]$
(2)$3$点$(0,\ 2)$,$(2,\ -8)$,$(-2,\ -12)$を通る放物線をグラフとする$2$次関数は$y=[$8$]$である.
(3)放物線$y=a(x-a)^2-a$が$x$軸の正の部分と交わる$a$の値の範囲は$a>[$9$]$,$[$10$]<a<[$11$]$である.
千葉工業大学 私立 千葉工業大学 2016年 第4問
$x$の$2$次関数$f_1(x),\ f_2(x),\ \cdots,\ f_n(x),\ \cdots$を条件

$f_1(x)=x^2-5x,$

$\displaystyle f_{n+1}(x)=x^2 \int_0^2 \{ t{f_n}^\prime(t)-f_n(t) \} \, dt+x \int_0^2 f_n(t) \, dt \quad (n=1,\ 2,\ 3,\ \cdots)$

により定める.さらに,数列$\{a_n\}$,$\{b_n\} (n=1,\ 2,\ 3,\ \cdots)$を
\[ f_n(x)=a_nx^2+b_nx \]
により定める.このとき,次の問いに答えよ.

(1)${f_n}^\prime(x)=[ア]a_nx+b_n$であり,数列$\{a_n\}$,$\{b_n\}$は
\[ a_{n+1}=\frac{[イ]}{[ウ]}a_n,\quad b_{n+1}=\frac{[エ]}{[オ]}a_n+[カ]b_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたす.
(2)$\displaystyle a_n=\left( \frac{[キ]}{[ク]} \right)^{n-1} (n=1,\ 2,\ 3,\ \cdots)$であり,$\displaystyle c_n=\frac{b_n}{{[カ]}^{n-1}}$とおくと,$\displaystyle c_{n+1}-c_n=\left( \frac{[ケ]}{[コ]} \right)^n (n=1,\ 2,\ 3,\ \cdots)$が成り立つ.
(3)$\displaystyle f_n(x)=\left( \frac{[キ]}{[ク]} \right)^{n-1}x^2+\left\{ [サ] \cdot \left( \frac{[シ]}{[ス]} \right)^{n-1}-[セ] \cdot {[ソ]}^{n-1} \right\} x$
である.
(4)$x$の方程式$f_n(x)=0$の$x=0$とは異なる解を$x=p_n$とする.不等式$p_n>M$がすべての正の整数$n$に対して成り立つような定数$M$のうち,最大の整数は$M=[タチ]$であり,$[タチ]<p_n<[タチ]+1$となるような最小の$n$は$[ツ]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。