タグ「条件」の検索結果

6ページ目:全636問中51問~60問を表示)
帯広畜産大学 国立 帯広畜産大学 2016年 第1問
原点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円$C$上に点$\mathrm{P}$をとり,点$\mathrm{P}$における円$C$の接線$L$の方程式を$y=ax+b$とする.接線$L$は,$x$軸と点$\mathrm{A}$で,$y$軸と点$\mathrm{B}$で交わり,$\triangle \mathrm{AOB}$の面積を$S$とする.また,$x$軸の正の向きを始線とし,それと直線$\mathrm{OP}$のなす正の角を$\theta$で表す.ただし,
\[ a>0,\quad b>0 \quad \cdots\cdots \quad (*) \]
とする.次の各問に答えなさい.

(1)$(ⅰ)$ 直線$\mathrm{OP}$の傾きを$a$を用いて表しなさい.
$(ⅱ)$ $a,\ b$を$\sin \theta$を用いて表しなさい.
$(ⅲ)$ $S$を$\sin 2\theta$を用いて表しなさい.
(2)$\displaystyle \theta=\frac{2 \pi}{3}$とする.
$(ⅰ)$ $a,\ b,\ S$の値をそれぞれ求めなさい.
$(ⅱ)$ 点$\mathrm{A}$と点$\mathrm{B}$の座標を求めなさい.
$(ⅲ)$ $\tan 2\theta$の値を求めなさい.
(3)$\theta<2\pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$と$S$のそれぞれの値を求めなさい.
(4)$\theta<200 \pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$がとりうるすべての値の和を$\pi$を用いて表しなさい.
茨城大学 国立 茨城大学 2016年 第3問
複素数平面上で,複素数$z$に対応する点$\mathrm{P}$を$\mathrm{P}(z)$と表す.$3$点$\mathrm{O}(0)$,$\mathrm{A}(1)$,$\mathrm{B}(\beta)$を頂点とする三角形$\mathrm{OAB}$がある.ただし,複素数$\beta$の偏角$\theta$は,$0<\theta<\pi$を満たすとする.また,$s$と$t$は$4s-t^2>0$を満たす実数とする.等式
\[ \beta^2-t \beta+s=0 \]
が成り立つとき,以下の各問に答えよ.

(1)複素数$\beta$の実部と虚部をそれぞれ$s$と$t$を用いて表せ.
(2)複素数$\beta$の絶対値と,偏角$\theta$に対する$\sin \theta$を,それぞれ$s$と$t$を用いて表せ.
(3)三角形$\mathrm{OAB}$が二等辺三角形になるために$s$と$t$が満たすべき条件を求めよ.
(4)三角形$\mathrm{OAB}$が$\mathrm{OA}=\mathrm{AB}$である二等辺三角形とする.このとき,三角形$\mathrm{OAB}$の面積が$\displaystyle \frac{1}{4}$となる$s$と$t$の値の組をすべて求めよ.
富山大学 国立 富山大学 2016年 第3問
曲線$C_1:y=x^3-x$と曲線$C_2:y=(x-\alpha)^3-(x-\alpha)+\beta$が,ちょうど$2$つの点を共有しているとする.ただし,$\alpha,\ \beta$は実数である.このとき,次の問いに答えよ.

(1)$\alpha,\ \beta$が満たす条件を求めよ.
(2)$\alpha,\ \beta$が$(1)$の条件を満たすとき,点$(\alpha,\ \beta)$が存在する領域を図示せよ.
富山大学 国立 富山大学 2016年 第2問
次の条件によって定められる数列$\{a_n\}$がある.
\[ a_1=-\frac{1}{5},\quad a_n-a_{n+1}=2(3n+1)(n-3)a_na_{n+1} \quad (n=1,\ 2,\ \cdots) \]
このとき,次の問いに答えよ.

(1)$1$以上の整数$n$に対し,$a_n \neq 0$であることを示せ.
(2)$a_n$を$n$を用いて表せ.
(3)$a_n<0$を満たす$a_n$の値のうち,最大のものを$M$とする.$a_n=M$であるような$n$を求めよ.
茨城大学 国立 茨城大学 2016年 第2問
$a,\ b$を実数として,座標空間内に$4$点$\mathrm{A}(3,\ 1,\ 3)$,$\mathrm{B}(2,\ 3,\ 2)$,$\mathrm{C}(3,\ 3,\ 1)$,$\mathrm{D}(2,\ a,\ b)$がある.ただし,$\mathrm{B}$と$\mathrm{D}$は異なる$2$点とする.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面を$T$とし,$T$上にあって$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る円を$U$とする.次の各問に答えよ.

(1)点$\mathrm{D}$が平面$T$上にあるとき,$a$と$b$の条件を求めて,$ab$平面上に図示せよ.
(2)点$\mathrm{D}$が円$U$の周上にあるとき,点$\mathrm{D}$の座標を求めよ.
早稲田大学 私立 早稲田大学 2016年 第4問
$f(x)=x^3-x$とする.$xy$平面上の点$(p,\ q)$から曲線$y=f(x)$へ引いた接線を考える.次の問に答えよ.

(1)直線$y=m(x-p)+q$が曲線$y=f(x)$の接線となるための条件を$m,\ p,\ q$を用いて表せ.
(2)点$(p,\ q)$から曲線$y=f(x)$に$3$本の接線を引くことができるとき,$p,\ q$の条件を求めよ.
(3)$(2)$の条件を満たす点$(p,\ q)$の範囲を図示せよ.
早稲田大学 私立 早稲田大学 2016年 第2問
放物線$y=x^2$上の異なる$2$点を$\mathrm{P}_1(\alpha,\ \alpha^2)$,$\mathrm{P}_2(\beta,\ \beta^2)$とする.ただし$\alpha<\beta$とする.線分$\mathrm{P}_1 \mathrm{P}_2$上の点$\mathrm{P}(a,\ b)$に対し,$S(a,\ b)=b-a^2$とする.次の設問に答えよ.

(1)$S(a,\ b)$の最大値$M(\alpha,\ \beta)$を求めよ.
(2)次の条件$(ⅰ)$,$(ⅱ)$を満たす線分$\mathrm{P}_1 \mathrm{P}_2$上の点の存在範囲の面積を求めよ.

(i) $\displaystyle M(\alpha,\ \beta)=\frac{1}{4}$
(ii) $\mathrm{P}_1,\ \mathrm{P}_2$を通る直線の傾きの絶対値は$1$以下.
山口東京理科大学 私立 山口東京理科大学 2016年 第6問
次の条件によって定められる数列$\{a_n\},\ \{b_n\}$がある.

$a_1=1,\quad b_1=2,$
$a_{n+1}=a_n+4b_n,\quad b_{n+1}=a_n-2b_n$


(1)数列$\{a_n+b_n\},\ \{a_n-4b_n\}$の一般項について,

$a_n+b_n=[ヘ] \cdot {[ホ]}^{n-1},$

$a_n-4b_n=-[マ] {(-[ミ])}^{n-1}$

が成り立つ.
(2)数列$\{a_n\}$の一般項について,
\[ a_n=\frac{[ム][メ] \cdot {[モ]}^{n-1}-[ヤ] \cdot {(-[ユ])}^{n-1}}{[ヨ]} \]
が成り立つ.
(3)数列$\{a_n\}$の漸化式について,
\[ a_{n+2}+[ラ]a_{n+1}-[リ]a_n=0 \]
が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
$a$を正の実数,$b,\ c$を実数とする.$f(x)=ax^2+bx+c$とし,$f^\prime(x)$を$f(x)$の導関数とする.

(1)放物線$y=f(x)$と直線$y=f^\prime(x)$が接するための必要十分条件は
\[ b^2=[ウ] \qquad \cdots\cdots(\mathrm{A}) \]
である.
(2)条件$(\mathrm{A})$が成り立つとき,その接点の座標は
\[ \left( [$4$]-\frac{b}{[$5$]a},\ [$6$]a \right) \]
である.このとき,直線$y=f^\prime(x)$は放物線$y=-f(x)$とも接し,その接点$\mathrm{P}$の座標は
\[ \left( [$7$][$8$]-\frac{b}{[$9$]a},\ [$10$][$11$]a \right) \]
である.
(3)直線$y=f^\prime(x)$が原点を中心とする半径$\sqrt{2}$の円$\mathrm{O}$と接するための必要十分条件は
\[ b^2=[エ] \qquad \cdots\cdots(\mathrm{B}) \]
である.この条件が成り立つとき,その接点を$\mathrm{Q}$とする.
(4)条件$(\mathrm{A}),\ (\mathrm{B})$が成り立ち,さらに点$\mathrm{P}$が点$\mathrm{Q}$と一致するのは,
\[ a=\frac{[$12$]}{[$13$]},\quad b=[$14$][$15$],\quad c=\frac{[$16$]}{[$17$]} \]
のときである.このとき,円$\mathrm{O}$は放物線$y=f(x)$とただ$1$つの共有点$([$18$],\ [$19$])$をもち,放物線$y=f(x)$,直線$y=f^\prime(x)$および円$\mathrm{O}$で囲まれた図形の面積は
\[ \frac{[$20$]}{[$21$]}-\frac{[$22$]}{[$23$]} \pi \]
である.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
以下の条件で定められる数列$\{a_n\}$がある.
\[ a_1=\frac{1}{10},\quad a_{n+1}=\frac{1}{100}a_n+\frac{1}{10} \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$\{a_n\}$の階差数列$\{b_n\}$を$b_n=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$で定める.$\{b_n\}$は等比数列で,初項を$\displaystyle \frac{1}{{10}^p}$,公比を$\displaystyle \frac{1}{{10}^q}$とおくと,$p=[$13$]$,$q=[$14$]$となる.ゆえに,$\{b_n\}$の第$n$項を
\[ b_n=\frac{1}{{10}^{rn+s}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおくと,$r=[$15$]$,$s=[$16$]$となる.さらに,$\{a_n\}$の第$n$項は,
\[ a_n=a_1+\sum_{k=[$17$]}^{n+[$18$][$19$]} b_k=\frac{\displaystyle\frac{1}{{10}^t} \left( 1-\frac{1}{{10}^{un}} \right)}{1-\displaystyle\frac{1}{{10}^v}} \quad (n=2,\ 3,\ 4,\ \cdots) \]
と求められる.ここで,$t=[$20$]$,$u=[$21$]$,$v=[$22$]$である.
(2)$\displaystyle S_n=\sum_{k=1}^n \frac{1}{{10}^{2k} a_k a_{k+1}} \quad (n=1,\ 2,\ 3,\ \cdots)$とおく.関係式
\[ \frac{b_k}{a_k a_{k+1}}=\frac{[$23$][$24$]}{a_k}+\frac{[$25$][$26$]}{a_{k+1}} \quad (k=1,\ 2,\ 3,\ \cdots) \]
を用いて計算すると,
\[ S_n=\frac{{10}^w \left( 1-\displaystyle\frac{1}{{10}^{xn}} \right)}{1-\displaystyle\frac{1}{{10}^{yn+z}}} \]
となる.ここで,$w=[$27$]$,$x=[$28$]$,$y=[$29$]$,$z=[$30$]$である.
(3)$({100}^{n+1}-1)S_n$は$[$31$]n+[$32$][$33$]$桁の整数になる.
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。