タグ「整数」の検索結果

13ページ目:全1020問中121問~130問を表示)
早稲田大学 私立 早稲田大学 2016年 第5問
数列$\{a_n\}$はすべての項が整数であり,次の性質を満たしている.

「正の整数$n$の正の約数が$k$個あるとき,これらを$d_1,\ d_2,\ \cdots,\ d_k$とすると,
\[ a_{d_1}+a_{d_2}+\cdots +a_{d_k}=n \]
が成り立つ.」

(1)$a_5=[ツ]$,$a_6=[テ]$,$a_{49}=[ト]$である.
(2)$a_{5^{100}}=[ナ] \cdot 5^{99}$である.
(3)$p,\ q$を$p<q$を満たす$2$つの素数とする.$a_{pq}=pq-11$が成立するならば,$p=[ニ]$,$q=[ヌ]$である.
津田塾大学 私立 津田塾大学 2016年 第3問
$a$を正の実数とする.$x \geqq 0$のとき,次の不等式が成り立つとする.
\[ \frac{x^3}{3}+a \geqq x \]
また,等号が成り立つ正の実数$x$が存在するとする.

(1)$a$の値を求めよ.
(2)次の連立不等式を満たす整数の組$(x,\ y)$をすべて求めよ.
\[ x \leqq y,\quad y \leqq \frac{x^3}{3}+a,\quad \frac{x^3}{3}+a \leqq 1 \]
津田塾大学 私立 津田塾大学 2016年 第3問
$m$を自然数とし,整数$x,\ y$は$x^3+y^3=m$を満たすとする.

(1)$0<x^2-xy+y^2 \leqq m$が成り立つことを示せ.

(2)$\displaystyle y^2 \leqq \frac{4}{3}m$が成り立つことを示せ.

(3)$x^3+y^3=19$を満たす整数の組$(x,\ y)$をすべて求めよ.ただし,$(2)$の結果を利用してもよい.
久留米大学 私立 久留米大学 2016年 第5問
数列$\{a_n\}$が$3(a_{n+1})^2=(a_n)^3$の関係を満たしているとする.ただし,$a_n$は正の実数で,$n$は正の整数とする.

(1)$\log a_n$を$n$と$a_1$を用いて表すと$[$15$]$となる.
(2)数列$\{a_n\}$が収束するような$a_1$の値の範囲は$[$16$]$である.
京都薬科大学 私立 京都薬科大学 2016年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.ただし,$[コ]$においては,$[コ]$につづくかっこ内の選択肢から適切なものを$\mathrm{A}$か$\mathrm{B}$の記号で答えよ.

(1)$2$つの円$x^2+y^2=1$,$(x-2)^2+y^2=R^2 (R>0)$が異なる$2$つの交点を持つのは$[ア]<R<[イ]$が成立するときである.このとき,$\mathrm{O}(0,\ 0)$,$\mathrm{A}(2,\ 0)$とおき,交点の$1$つを$\mathrm{P}$とすると
\[ \cos \angle \mathrm{OPA}=[ウ] \]
が成立するので,$\angle \mathrm{OPA}={90}^\circ$となるのは$R=[エ]$のときである.
(2)$x$の$2$次方程式$x^2-4x \sin \theta+4+\sqrt{2}-(2+2 \sqrt{2}) \cos \theta=0 (0 \leqq \theta<2\pi)$が異なる$2$つの実数解を持つような$\theta$の範囲は,$[オ]<\theta<[カ]$および$[キ]<\theta<[ク]$である.
(3)$p$と$q$を正の整数とするとき,$x$の$2$次方程式$x^2-2 \sqrt{p}x+q=0$は異なる$2$つの実数解を持つとする.これらの解を$\alpha$と$\beta$で表すとき,$r=|\alpha-\beta|$と$p,\ q$の間には,関係式$r^2=[ケ]$が成り立つ.したがって,もし$r$が整数ならば,$r$は$[コ]$($\mathrm{A}:$偶数,$\mathrm{B}:$奇数)である.このとき,$2$次方程式の解を$q$と$r$を用いてあらわすと$x=[サ] \pm [シ]$となる.
(4)$1$つのサイコロを$2$回続けて投げるとき,$1$回目に出る目を$a$,$2$回目に出る目を$b$とし,$x$の$2$次方程式$x^2-ax+b=0 \ \cdots\ ①$を考える.$2$次方程式$①$が実数解を持たない確率は$[ス]$である.$2$次方程式$①$が実数解を持つとき,それが重解である条件付き確率は$[セ]$である.$2$次方程式$①$の解が$2$つとも自然数になる確率は$[ソ]$である.
(5)$3^{10}={10}^x$となる$x$は$[タ]$である.よって,$3^{10}$は$[チ]$桁の$10$進数である.同様の考え方で$5^{10}$を$9$進数で表すと,$[ツ]$桁である.ただし,$\log_{10}3=0.4771$,$\log_{10}5=0.6990$とする.
京都薬科大学 私立 京都薬科大学 2016年 第4問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$1$から$6$までの数字が$1$つずつ書かれた赤球が$6$個入った袋$\mathrm{A}$と,$1$から$6$までの数字が$1$つずつ書かれた白球が$6$個入った袋$\mathrm{B}$がある.それぞれの袋から無作為に$1$個ずつ球を取り出し,それらの球に書かれた数の合計が$k$となる場合の数を$f(k)$で表す.このとき,$xy$平面上の点$(k,\ f(k))$は,直線$x=[ア]$に関して対称な$2$直線上に並び,これらの対称な$2$直線と$x$軸で囲まれた部分の面積は$[イ]$である.
(2)$N$を$2$以上の整数とする.$1$から$N$までの数字が$1$つずつ書かれた赤球が$N$個入った袋$\mathrm{A}$と,$1$から$N$までの数字が$1$つずつ書かれた白球が$N$個入った袋$\mathrm{B}$がある.それぞれの袋から無作為に$1$個ずつ球を取り出し,それらの球に書かれた数の合計が$l$となる場合の数を$g(l)$で表す.このとき,$xy$平面上の点$(l,\ g(l))$は,直線$x=[ウ]$に関して対称な$2$直線上に並び,これらの対称な$2$直線と$x$軸で囲まれた部分の面積は$[エ]$である.
(3)$N$を$2$以上の整数とする.$1$から$N$までの数字が$1$つずつ書かれた赤球が$N$個と,$1$から$N$までの数字が$1$つずつ書かれた白球が$N$個入った袋$\mathrm{A}$と,$1$から$2N$までの数字が$1$つずつ書かれた青球が$2N$個入った袋$\mathrm{B}$がある.それぞれの袋から無作為に$1$個ずつ球を取り出し,それらの球に書かれた数の合計が$m$となる場合の数を$h(m)$で表す.このとき,$xy$平面上の点$(m,\ h(m))$が並ぶ直線の方程式は以下のようになる.


\qquad \; \!\!$2 \leqq m \leqq [オ]$の$(m,\ h(m))$について,$y=[カ]$
$[オ] \leqq m \leqq [キ]$の$(m,\ h(m))$について,$y=[ク]$
$[キ] \leqq m \leqq [ケ]$の$(m,\ h(m))$について,$y=[コ]$


これらの$3$直線と$x$軸で囲まれた部分の面積は$[サ]$である.
青山学院大学 私立 青山学院大学 2016年 第1問
小数第$1$位までで表される正数$X,\ Y$に対して,$m,\ n$を
\[ X-0.4 \leqq m \leqq X+0.5,\quad Y-0.4 \leqq n \leqq Y+0.5 \quad \cdots \quad ① \]
を満たす$0$以上の整数とする.このとき,次の問に答えよ.

(1)$X=2.6$のとき$m=[$1$]$であり,$Y=4.3$のとき$n=[$2$]$である.
(2)関係式$①$を満たす$X,\ Y,\ m,\ n$に対して,さらに関係式
\[ \left\{ \begin{array}{lll}
5X-4Y=22.2 & \cdots & ② \\
2m+3n=26 & \cdots & ③
\end{array} \right. \]
が成立するという.$X,\ Y,\ m,\ n$を求めよう.
関係式$③$を満たす$0$以上の整数$m,\ n$のうちで,対応する$X,\ Y$が関係式$②$を満たすのは$m=[$3$]$,$n=[$4$]$である.このとき,
\[ X=[$3$]+\frac{x}{10},\quad Y=[$4$]+\frac{y}{10} \]
とすると,$5x-4y=[$5$][$6$]$が成り立つ.
以上のことから,$x=[$7$]$,$y=[$8$][$9$]$となる.
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
実数$x$に対して,$[x]$は$x$以下の最大の整数を表すものとする.

(1)数列$\displaystyle a_1=\frac{1}{[\sqrt{1}]},\ a_2=\frac{2}{[\sqrt{2}]},\ a_3=\frac{3}{[\sqrt{3}]},\ \cdots,\ a_n=\frac{n}{[\sqrt{n}]},\ \cdots$としたとき,$1$から$99$までの数$n$のうち$a_n$が整数になるものは$[$70$][$71$]$個である.また,$a_n=10$と最初になるのは$n=[$72$][$73$]$のときである.さらに,$\displaystyle S_n=\sum_{i=1}^n a_i$としたとき,$S_{99}=[$74$][$75$][$76$]$である.
(2)数列$\displaystyle b_1=\frac{1}{[\sqrt[3]{1}]},\ b_2=\frac{2}{[\sqrt[3]{2}]},\ b_3=\frac{3}{[\sqrt[3]{3}]},\ \cdots,\ b_n=\frac{n}{[\sqrt[3]{n}]},\ \cdots$としたとき,$1$から$124$までの数$n$のうち$b_n$が整数になるものは$[$77$][$78$]$個である.また,$b_n=10$と最初になるのは$n=[$79$][$80$]$のときである.さらに,$\displaystyle T_n=\sum_{i=1}^n b_i$としたとき,$T_{124}=\kakkofour{$81$}{$82$}{$83$}{$84$}$である.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[サ]$に当てはまる数または式を記入せよ.

(1)$U=\{1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9\}$を全体集合とする.$A$を$6$の正の約数がつくる部分集合とし,$A$の補集合を$\overline{A}$とする.$B$を$9$の正の約数がつくる部分集合とし,$B$の補集合を$\overline{B}$とする.$\overline{A} \cup B$の要素を書き並べて表すと$[ア]$であり,$A \cap \overline{B}$の要素を書き並べて表すと$[イ]$である.
(2)等式$\displaystyle f(x)=-6x+2 \int_{-1}^2 f(t) \, dt$を満たす関数$f(x)$は,$f(x)=[ウ]$である.
(3)$2$次方程式$x^2+2ax+a=0$が$x=-a$を解として持つときの$a$の値をすべて求めると,$a=[エ]$である.
(4)$2$進法で表された数$1101011_{(2)}$を$10$進法で表すと$[オ]$である.
(5)複素数$x=a+bi (a>0,\ b>0)$が$x^4=-9$を満たすとき,定数$a=[カ]$,$b=[キ]$である.ただし,$i$は虚数単位とする.
(6)$0 \leqq \theta \leqq \pi$の範囲で$\cos 2\theta-\cos \theta=0$を満たす$\theta$をすべて求めると,$\theta=[ク]$である.
(7)不等式$\displaystyle -2<\log_{8}x<\frac{5}{3}$を解くと,$\displaystyle \frac{1}{[ケ]}<x<[コ]$である.ただし,空欄に入る数は整数である.
(8)$p,\ q$を実数とし,$q>4$とする.座標平面上の$4$点$\mathrm{A}(p,\ q)$,$\mathrm{B}(0,\ 4)$,$\mathrm{C}(1,\ -1)$,$\mathrm{D}(5,\ 3)$を頂点とする平行四辺形$\mathrm{ABCD}$において$\overrightarrow{\mathrm{DC}}$と$\overrightarrow{\mathrm{DA}}$のなす角を$\theta$とするとき,$\cos \theta=[サ]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
\begin{mawarikomi}{36mm}{
\begin{zahyou*}[ul=1mm](-5,30)(0,35)
\def\C{(0,0)}%
\Drawline{(0,0)(30,0)}%
\Drawline{(0,10)(30,10)}%
\Drawline{(0,20)(30,20)}%
\Drawline{(0,30)(30,30)}%
\Drawline{(0,0)(0,30)}%
\Drawline{(10,0)(10,30)}%
\Drawline{(20,0)(20,30)}%
\Drawline{(30,0)(30,30)}%
\tenretu*{A(10,-13.75);B(10,13.75);C(-17,0)}%
\tenretu*{A(10,13.75);B(17,0);C(-17,0)}%
\emathPut{(0,35)}{例:$4 \times 4$の場合}
\Kuromaru[8pt]{(10,0)}
\Kuromaru[8pt]{(0,20)}
\Kuromaru[8pt]{(20,20)}
\Kuromaru[8pt]{(20,30)}
\tenretu*{A(-17,0);B(17,0)}%
\end{zahyou*}
}
座標平面の格子点$\{(i,\ j) \;|\; 1 \leqq i \leqq n,\ 1 \leqq j \leqq n \}$に$n$個の碁石を置く.ここで,$n$は正の整数とする.ただし,これらの碁石は同じ種類であり,互いに区別できない.また,格子点には高々$1$つの碁石しか置けないものとする.各$i$に対して,$\{(i,\ j) \;|\; 1 \leqq j \leqq n \}$を第$i$列,各$j$に対して$\{(i,\ j) \;|\; 1 \leqq i \leqq n \}$を第$j$行と呼ぶ.
\end{mawarikomi}

(1)$n$個の碁石を置くすべての場合の配置の総数を$A_n$とすると
\[ A_1=1, A_2=6, A_3=[$1$][$2$], A_4=\kakkofour{$3$}{$4$}{$5$}{$6$}, \cdots \]
である.
(2)$n$個の碁石を置くとき,どの行およびどの列にも$1$個の碁石を置く場合の配置の総数を$B_n$とすると
\[ B_1=1, B_2=2, B_3=[$7$][$8$], B_4=\kakkofour{$9$}{$10$}{$11$}{$12$}, \cdots \]
である.
(3)$n$個の碁石を置くとき,どの行およびどの列にも高々$2$個の碁石を置く場合の配置の総数を$C_n$とすると
\[ C_1=1, C_2=6, C_3=[$13$][$14$], C_4=\kakkofour{$15$}{$16$}{$17$}{$18$}, \cdots \]
である.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。