タグ「数列の和」の検索結果

2ページ目:全498問中11問~20問を表示)
大阪教育大学 国立 大阪教育大学 2016年 第4問
$n$を$2$以上の自然数とする.

(1)方程式$z^n=1$をみたす複素数$z$をすべて求めよ.
(2)$c_0,\ c_1,\ \cdots,\ c_n$を実数かつ$c_0 \neq 0$とする.方程式
\[ c_0z^n+c_1z^{n-1}+\cdots+c_n=0 \]
のすべての解を$\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_n$とするとき,$\alpha_1+\alpha_2+\cdots +\alpha_n$を$c_0,\ c_1,\ \cdots,\ c_n$を用いて表せ.
(3)$\displaystyle \sum_{k=1}^{n-1} \cos \frac{2k\pi}{n}$を求めよ.
横浜国立大学 国立 横浜国立大学 2016年 第1問
次の問いに答えよ.

(1)関数$\displaystyle f(x)=\frac{\log (1-x)}{x}$は$0<x<1$の範囲で減少することを示せ.
(2)極限値
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{\tan \left( \displaystyle\frac{(n+k) \pi}{6n} \right)} \]
を求めよ.
大阪大学 国立 大阪大学 2016年 第1問
$1$以上$6$以下の$2$つの整数$a,\ b$に対し,関数$f_n(x) (n=1,\ 2,\ 3,\ \cdots)$を次の条件(ア),(イ),(ウ)で定める.

(ア) $f_1(x)=\sin (\pi x)$
(イ) $\displaystyle f_{2n}(x)=f_{2n-1} \left( \frac{1}{a}+\frac{1}{b}-x \right) \qquad (n=1,\ 2,\ 3,\ \cdots)$
(ウ) $f_{2n+1}(x)=f_{2n}(-x) \qquad \qquad \qquad \ \,\!(n=1,\ 2,\ 3,\ \cdots)$

以下の問いに答えよ.

(1)$a=2,\ b=3$のとき,$f_5(0)$を求めよ.

(2)$a=1,\ b=6$のとき,$\displaystyle \sum_{k=1}^{100} (-1)^k f_{2k}(0)$を求めよ.

(3)$1$個のさいころを$2$回投げて,$1$回目に出る目を$a$,$2$回目に出る目を$b$とするとき,$f_6(0)=0$となる確率を求めよ.
群馬大学 国立 群馬大学 2016年 第4問
定数$a$は$0<a<1$とし,また$n$は正の整数とする.ただし,$n=1$のときは$(a-x)^{n-1}=1$とする.
\[ R_n=n \int_0^a \frac{(a-x)^{n-1}}{(1-x)^{n+1}} \, dx \]
とするとき,次の問いに答えよ.

(1)$R_n$を求めよ.
(2)無限級数$\displaystyle \sum_{n=1}^\infty R_n$の和を求めよ.
群馬大学 国立 群馬大学 2016年 第3問
定数$a$は$0<a<1$とし,また$n$は正の整数とする.ただし,$n=1$のときは$(a-x)^{n-1}=1$とする.
\[ R_n=n \int_0^a \frac{(a-x)^{n-1}}{(1-x)^{n+1}} \, dx \]
とするとき,次の問いに答えよ.

(1)$R_1$と$R_2$を求めよ.
(2)$R_n$を求めよ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty R_n$の和を求めよ.
信州大学 国立 信州大学 2016年 第5問
$n$を自然数とする.以下の問いに答えよ.

(1)$\displaystyle \int_0^1 (1-x^2)^n \, dx=\frac{4^n(n!)^2}{(2n+1)!}$を示せ.

(2)$\displaystyle \sum_{k=0}^n \frac{n!}{k!(n-k)!} \frac{(-1)^k}{2k+1}=\frac{4^n(n!)^2}{(2n+1)!}$を示せ.
信州大学 国立 信州大学 2016年 第3問
$n$を自然数とする.以下の問いに答えよ.

(1)$\displaystyle \int_0^1 (1-x^2)^n \, dx=\frac{4^n(n!)^2}{(2n+1)!}$を示せ.

(2)$\displaystyle \sum_{k=0}^n \frac{n!}{k!(n-k)!} \frac{(-1)^k}{2k+1}=\frac{4^n(n!)^2}{(2n+1)!}$を示せ.
岩手大学 国立 岩手大学 2016年 第3問
次の問いに答えよ.

(1)ユークリッドの互除法を用いて,$89$と$29$の最大公約数を求めよ.
(2)$2$元$1$次不定方程式$89x+29y=1$の整数解を$1$組求めよ.
(3)$2$元$1$次不定方程式$89x+29y=-20$の整数解として現れる$x$の値のうち,正のものを小さい順に$x_1,\ x_2,\ x_3,\ \cdots$とする.このとき,自然数$m$に対して,$x_m$を$m$で表せ.
(4)$(3)$で定めた$x_m$に対し,$89x_m+29y=-20$を満たす$y$の値を$y_m$とするとき,自然数$n$に対して,$\displaystyle \sum_{m=1}^n (3x_m+y_m)^2$を$n$で表せ.
信州大学 国立 信州大学 2016年 第1問
$2$つの変量$x,\ y$のデータが,$n$個の$x,\ y$の値の組として
\[ (x_1,\ y_1),\ (x_2,\ y_2),\ \cdots,\ (x_n,\ y_n) \]
のように与えられているとする.このとき,以下の問いに答えよ.

(1)$x,\ y$の平均値をそれぞれ$\overline{x},\ \overline{y}$とするとき,変量$x$と$y$の共分散$s_{xy}$は
\[ s_{xy}=\frac{1}{n} \left( \sum_{k=1}^n x_ky_k \right)-\overline{x} \; \overline{y} \]
であることを示せ.
(2)これらのデータの間には,$y_k=ax_k+b (k=1,\ 2,\ \cdots,\ n)$という関係があるとする.ただし,$a,\ b$は実数で,$a \neq 0$である.変量$x$の標準偏差$s_x$は$0$でないとする.このとき,$x$と$y$の相関係数を求めよ.
東京農工大学 国立 東京農工大学 2016年 第2問
$n$を自然数とし,$a,\ b,\ r$は実数で$b>0$,$r>0$とする.複素数$w=a+bi$は$w^2=-2 \overline{w}$を満たすとする.$\alpha_n=r^{n+1} w^{2-3n} (n=1,\ 2,\ 3,\ \cdots)$とする.ただし,$i$は虚数単位とし,複素数$z$に共役な複素数を$\overline{z}$で表す.次の問いに答えよ.

(1)$a$と$b$の値を求めよ.
(2)複素数平面上の$3$点$\mathrm{O}(0)$,$\mathrm{A}(\alpha_1)$,$\mathrm{B}(\overline{\alpha_1})$について,$\angle \mathrm{AOB}$の大きさを$\theta$とする.ただし,$0 \leqq \theta \leqq \pi$とする.$\theta$の値を求めよ.
(3)$\alpha_n$の実部を$c_n (n=1,\ 2,\ 3,\ \cdots)$とする.$c_n$を$n$と$r$を用いて表せ.
(4)$(3)$で求めた$c_n$を第$n$項とする数列$\{c_n\}$について,無限級数$\displaystyle \sum_{n=1}^\infty c_n$が収束し,その和が$\displaystyle \frac{8}{3}$となるような$r$の値を求めよ.
スポンサーリンク

「数列の和」とは・・・

 まだこのタグの説明は執筆されていません。