タグ「平面」の検索結果

25ページ目:全1904問中241問~250問を表示)
広島工業大学 私立 広島工業大学 2016年 第4問
座標平面において,連立不等式$\left\{ \begin{array}{l}
y \geqq x^2-2x \\
y-x \leqq 0
\end{array} \right.$の表す領域を$D$とする.次の問いに答えよ.

(1)$D$を図示せよ.
(2)$D$の点$(x,\ y)$に対して$x+y=a$とする.$a$の最大値と最小値,およびそのときの$x,\ y$を求めよ.
(3)$D$の点$(x,\ y)$に対して$xy=b$とする.$b$の最大値と最小値,およびそのときの$x,\ y$を求めよ.
名城大学 私立 名城大学 2016年 第2問
$2$つの$2$次方程式$x^2+ax-(b+1)=0$と$bx^2+2bx-(a+2)=0$がともに実数解をもたないような実数の組$(a,\ b)$の存在する領域を,$ab$平面上に図示せよ.
千葉工業大学 私立 千葉工業大学 2016年 第2問
次の各問に答えよ.

(1)実数$x,\ y$は$x \geqq \sqrt[3]{2}$,$y \geqq 32$,$x^6y=256$をみたしている.$F=(\log_{16}x)(\log_2 y)$は,$t=\log_2 x$とおくと
\[ F=\frac{[アイ]}{[ウ]}t^2+[エ]t \]
と表される.$t$の取り得る値の範囲は$\displaystyle \frac{[オ]}{[カ]} \leqq t \leqq \frac{[キ]}{[ク]}$であり,$F$の最大値は$\displaystyle \frac{[ケ]}{[コ]}$,最小値は$\displaystyle \frac{[サ]}{[シ]}$である.
(2)$x$の関数$f(x)=x(x^2+ax+b)$($a,\ b$は定数)がある.$xy$平面において,原点$\mathrm{O}$と点$\mathrm{A}(5,\ f(5))$を結ぶ線分$\mathrm{OA}$を$4:1$に内分する点を$\mathrm{B}$とする.$\mathrm{B}$の$x$座標は$[ス]$であり,$\mathrm{B}$が曲線$y=f(x)$上にあるとき,$a=[セソ]$である.さらに,$f(x)$が$x=[ス]$で極値をとるとき,$b=[タチ]$であり,$f(x)$の極大値は$[ツテ]$である.
千葉工業大学 私立 千葉工業大学 2016年 第3問
次の各問に答えよ.

(1)三角形$\mathrm{OAB}$において,$\mathrm{OA}=9$,$\mathrm{OB}=7$,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=57$である.$\mathrm{AB}=[ア]$であり,頂点$\mathrm{O}$から直線$\mathrm{AB}$に下ろした垂線を$\mathrm{OP}$とすると
\[ \overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OA}}+\frac{[イ]}{[ウ]} \overrightarrow{\mathrm{AB}} \]
である.$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{Q}$とすると,$\displaystyle \mathrm{AQ}=\frac{[エ]}{[オ]}$であり,$\displaystyle \mathrm{PQ}=\frac{[カキ]}{[ク]}$である.

(2)$xy$平面上に円$K:x^2+y^2-4x-2y+4=0$と直線$\ell:y=ax+a+1$がある.$\ell$は定数$a$の値によらず,点$\mathrm{P}([ケコ],\ [サ])$を通る.
$a=0$のとき,$\ell$と$K$との$2$つの交点を$\mathrm{A}$,$\mathrm{B}$とすると,$\mathrm{PA} \cdot \mathrm{PB}=[シ]$である.
また,$\ell$が$K$と$2$点$\mathrm{C}$,$\mathrm{D}$で交わり,$\mathrm{PC}:\mathrm{PD}=2:3$であるとき,
\[ \mathrm{CD}=\frac{[ス] \sqrt{[セ]}}{[ソ]} \]
であり,$\displaystyle a=\pm \frac{\sqrt{[タ]}}{[チ]}$である.
大阪工業大学 私立 大阪工業大学 2016年 第2問
次の空所を埋めよ.

(1)数列$\{a_n\}$が$a_1=2$,$a_{n+1}=3a_n+2^n (n=1,\ 2,\ 3,\ \cdots)$を満たすとき,$a_2=[ア]$,$a_3=[イ]$である.また,漸化式を変形すると,$a_{n+1}+2^{n+1}=3(a_n+[ウ])$となることから,数列$\{a_n\}$の一般項は,$a_n=[エ]$である.
(2)$t>0$とし,$k$を実数とする.原点を$\mathrm{O}$とする座標平面上の$2$点$\displaystyle \mathrm{A} \left( \frac{\sqrt{2}}{2},\ \frac{\sqrt{2}}{2} \right)$,$\mathrm{B}(t,\ -t)$について,$\mathrm{AB}=2 \sqrt{2}$であるとする.このとき,$t=[オ]$である.さらに,直線$\mathrm{OA}$上の点$\mathrm{P}(k,\ k)$を中心とする円$C$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るとき,$k=[カ]$であり,円$C$の半径$r$は,$r=[キ]$である.
東洋大学 私立 東洋大学 2016年 第4問
$xy$平面において,点$\mathrm{P}$が単位円周上の$y \geqq 0$の部分を動くとき,点$\mathrm{P}$から単位円周上の$3$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$,$\displaystyle \mathrm{C} \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$までの距離の和$\mathrm{PA}+\mathrm{PB}+\mathrm{PC}$を$L$とする.以下,$L$の最大値を求める.点$\mathrm{P}$の座標を$(\cos \theta,\ \sin \theta)$とおき,$L$を$\theta$の式で表すと,


$\displaystyle L=\sqrt{(\cos \theta-[ア])^2+\sin^2 \theta}+\sqrt{(\cos \theta+[イ])^2+\sin^2 \theta}$

$\displaystyle +\sqrt{\left( \cos \theta-\frac{1}{[ウ]} \right)^2+\left( \sin \theta-\frac{\sqrt{[エ]}}{[オ]} \right)^2}$


と表される.整理すると,たとえば,点$\mathrm{P}$が第$2$象限にあるとき,
\[ L=\left( [カ]+\sqrt{[キ]} \right) \sin \frac{\theta}{[ク]}+\cos \frac{\theta}{[ケ]} \]
となり,適当な実数$\alpha$を用いて
\[ L=\sqrt{[コ]+[サ] \sqrt{[シ]}} \sin \left( \frac{\theta}{[ス]}+\alpha \right) \]
と表すことができる.よって,$L$の最大値は,$\sqrt{[セ]}+\sqrt{[ソ]}$である.ただし,$[セ]>[ソ]$とする.
大阪工業大学 私立 大阪工業大学 2016年 第2問
次の空所を埋めよ.

(1)数列$\{a_n\}$が$a_1=2$,$a_{n+1}=3a_n+2^n (n=1,\ 2,\ 3,\ \cdots)$を満たすとき,$a_2=[ア]$,$a_3=[イ]$である.また,漸化式を変形すると,$a_{n+1}+2^{n+1}=3(a_n+[ウ])$となることから,数列$\{a_n\}$の一般項は,$a_n=[エ]$である.
(2)$t>0$とし,$k$を実数とする.原点を$\mathrm{O}$とする座標平面上の$2$点$\displaystyle \mathrm{A} \left( \frac{\sqrt{2}}{2},\ \frac{\sqrt{2}}{2} \right)$,$\mathrm{B}(t,\ -t)$について,$\mathrm{AB}=2 \sqrt{2}$であるとする.このとき,$t=[オ]$である.さらに,直線$\mathrm{OA}$上の点$\mathrm{P}(k,\ k)$を中心とする円$C$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るとき,$k=[カ]$であり,円$C$の半径$r$は,$r=[キ]$である.
金沢工業大学 私立 金沢工業大学 2016年 第3問
$\mathrm{O}$を原点とする座標平面において,点$\mathrm{A}$,$\mathrm{B}$をそれぞれ$\overrightarrow{\mathrm{OA}}=(1,\ 0)$,$\overrightarrow{\mathrm{OB}}=(1,\ 2)$で定め,点$\mathrm{P}$を$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$($s,\ t$は実数)で定める.

(1)$s=2$,$t=3$のとき,$\overrightarrow{\mathrm{OP}}=([サ],\ [シ])$である.
(2)$\overrightarrow{\mathrm{OP}}=(2,\ 10)$のとき,$s=[スセ]$,$t=[ソ]$である.
(3)実数$s,\ t$が$4s+5t \leqq 20$,$s \geqq 0$,$t \geqq 0$を満たしながら変化するとき,点$\mathrm{P}$の存在する範囲は原点$\mathrm{O}$,点$([タ],\ [チ])$,$([ツ],\ [テ])$を頂点とする三角形の内部および周である.ただし,$[タ]<[ツ]$とする.
近畿大学 私立 近畿大学 2016年 第2問
等式
\[ f^\prime(x)=x^2+2 \left( \int_0^1 f(t) \, dt \right) x \]
を満たす関数$y=f(x)$を考える.$\displaystyle c=\int_0^1 f(t) \, dt$とおく.

(1)$\displaystyle f(x)=\frac{1}{3}x^3+cx^2+\left( \frac{[ア]}{[イ]}c-\frac{[ウ]}{[エオ]} \right)$であり,

$f(0)=1$のとき,$\displaystyle c=\frac{[カキ]}{[ク]}$である.

(2)$c<0$とし,$f(x)$は$0 \leqq x \leqq 1$において$x=1$で最大値をとるものとする.このとき,$c$のとりうる最小の値は
\[ \frac{[ケコ]}{[サ]} \]
であり,$f(x)$の$0 \leqq x \leqq 1$における最小値は$c$を用いて
\[ \frac{[シ]}{[ス]} c^{\mkakko{セ}}+\frac{[ソ]}{[タ]}c-\frac{[チ]}{[ツテ]} \]
と表すことができる.
(3)座標平面において,関数$y=f(x)$のグラフと直線
\[ y=-\frac{3}{4}c^2x-\frac{1}{12} \]
が点$(-1,\ f(-1))$で接するとき,$c=[ト]$である.このとき,$2$つのグラフのもう$1$つの共有点の$x$座標は$[ナニ]$である.
近畿大学 私立 近畿大学 2016年 第2問
等式
\[ f^\prime(x)=x^2+2 \left( \int_0^1 f(t) \, dt \right) x \]
を満たす関数$y=f(x)$を考える.$\displaystyle c=\int_0^1 f(t) \, dt$とおく.

(1)$\displaystyle f(x)=\frac{1}{3}x^3+cx^2+\left( \frac{[ア]}{[イ]}c-\frac{[ウ]}{[エオ]} \right)$であり,

$f(0)=1$のとき,$\displaystyle c=\frac{[カキ]}{[ク]}$である.

(2)$c<0$とし,$f(x)$は$0 \leqq x \leqq 1$において$x=1$で最大値をとるものとする.このとき,$c$のとりうる最小の値は
\[ \frac{[ケコ]}{[サ]} \]
であり,$f(x)$の$0 \leqq x \leqq 1$における最小値は$c$を用いて
\[ \frac{[シ]}{[ス]} c^{\mkakko{セ}}+\frac{[ソ]}{[タ]}c-\frac{[チ]}{[ツテ]} \]
と表すことができる.
(3)座標平面において,関数$y=f(x)$のグラフと直線
\[ y=-\frac{3}{4}c^2x-\frac{1}{12} \]
が点$(-1,\ f(-1))$で接するとき,$c=[ト]$である.このとき,$2$つのグラフのもう$1$つの共有点の$x$座標は$[ナニ]$である.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。