タグ「実数」の検索結果

6ページ目:全2197問中51問~60問を表示)
愛知教育大学 国立 愛知教育大学 2016年 第4問
$xy$平面において,点$(0,\ 2)$を中心とする半径$2$の円を$C$とする.また,放物線$y=ax^2$を$P$とする.ただし,$a$は正の実数とする.

(1)円$C$と放物線$P$との共有点が円$C$の円周の長さを$3$等分するとき,$a$の値を求めよ.
(2)$a$の値を$(1)$で求めたものとする.このとき,円$C$と放物線$P$により囲まれてできる図形のうち,点$\displaystyle \left( \frac{3}{2},\ \frac{3}{2} \right)$を内部に含む図形の面積を求めよ.
静岡大学 国立 静岡大学 2016年 第3問
次の各問に答えよ.

(1)関数$\displaystyle y=\frac{\log x}{x} (x>0)$の増減,凹凸を調べ,そのグラフの概形をかけ.ただし,$\log$は自然対数を表す.また,等式$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$は証明なしに用いてよい.

(2)$a$を正の実数とする.このとき,$a^x=x^a$を満たす正の実数$x$の個数を調べよ.

(3)定積分$\displaystyle \int_1^{\sqrt{e}} \frac{\log x}{x} \, dx$を求めよ.ただし,$e$は自然対数の底である.
静岡大学 国立 静岡大学 2016年 第4問
$i$を虚数単位とするとき,次の各問に答えよ.

(1)複素数$c=1+i$について,$c$と共役な複素数$\overline{c}$および$|c|^2$をそれぞれ求めよ.
(2)複素数$z$が$|z|=1$を満たすとする.このとき,$\displaystyle z+\frac{1}{z}$が実数であることを証明せよ.
(3)$\alpha,\ \beta$を複素数として$\alpha$の実部と虚部がともに正であるとする.また,$|\alpha|=|\beta|=1$とする.複素数$\displaystyle i \alpha,\ \frac{i}{\alpha},\ \beta$で表される複素数平面上の$3$点が,ある正三角形の$3$頂点であるとき,$\alpha,\ \beta$をそれぞれ求めよ.
静岡大学 国立 静岡大学 2016年 第4問
$\alpha$を絶対値が$1$の複素数とし,等式$z=\alpha^2 \overline{z}$を満たす複素数$z$の表す複素数平面上の図形を$S$とする.ただし,$\overline{z}$は$z$と共役な複素数を表す.このとき,次の各問に答えよ.

(1)$z=\alpha^2 \overline{z}$が成り立つことと,$\displaystyle \frac{z}{\alpha}$が実数であることは同値であることを証明せよ.また,このことを用いて,図形$S$は原点を通る直線であることを示せ.
(2)複素数平面上の点$\mathrm{P}(w)$を直線$S$に関して対称移動した点を$\mathrm{Q}(w^\prime)$とする.このとき,$w^\prime$を$w$と$\alpha$を用いて表せ.
大阪教育大学 国立 大阪教育大学 2016年 第2問
実数$a,\ b$に対して,座標空間の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{P}(1,\ 0,\ a)$,$\mathrm{Q}(0,\ 2,\ b)$を考える.三角形$\mathrm{OPQ}$の面積を$S$とする.

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$のなす角を$\theta$とするとき,$\cos \theta$を$a,\ b$を用いて表せ.
(2)$S$を$a,\ b$を用いて表せ.
(3)$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$が定める平面上に点$\mathrm{R}(1,\ 1,\ 1)$があるとき,$a$と$b$の関係を求め,$S$の最小値を求めよ.
大阪教育大学 国立 大阪教育大学 2016年 第4問
$n$を$2$以上の自然数とする.

(1)方程式$z^n=1$をみたす複素数$z$をすべて求めよ.
(2)$c_0,\ c_1,\ \cdots,\ c_n$を実数かつ$c_0 \neq 0$とする.方程式
\[ c_0z^n+c_1z^{n-1}+\cdots+c_n=0 \]
のすべての解を$\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_n$とするとき,$\alpha_1+\alpha_2+\cdots +\alpha_n$を$c_0,\ c_1,\ \cdots,\ c_n$を用いて表せ.
(3)$\displaystyle \sum_{k=1}^{n-1} \cos \frac{2k\pi}{n}$を求めよ.
山形大学 国立 山形大学 2016年 第1問
$xy$平面上に点$\mathrm{A}(0,\ \sqrt{2})$,点$\mathrm{B}(0,\ -\sqrt{2})$がある.点$\mathrm{P}$は
\[ \mathrm{PB}=\mathrm{PA}+2 \]
を満たすように$xy$平面上を動き,軌跡$C$をえがく.以下の問いに答えよ.

(1)軌跡$C$の方程式を求め,点$\mathrm{P}$の$y$座標のとりうる範囲を示せ.

(2)軌跡$C$の方程式について,導関数$\displaystyle \frac{dy}{dx}$を求めよ.



$a$を実数とする.曲線$x^2+(y-a)^2=9$と軌跡$C$との共有点について,以下の問いに答えよ.


\mon[$(3)$] $a=4$のとき,共有点の個数を求めよ.
\mon[$(4)$] $a$の値によって共有点の個数がどのように変わるか調べよ.
横浜国立大学 国立 横浜国立大学 2016年 第2問
実数$a,\ b$に対し,関数
\[ f(x)=x^4+2ax^3+(a^2+1)x^2-a^3+a+b \]
がただ$1$つの極値をもち,その極値が$0$以上になるとする.次の問いに答えよ.

(1)$a,\ b$のみたす条件を求めよ.
(2)$a,\ b$が$(1)$の条件をみたすとき,$a-2b$の最大値を求めよ.
滋賀医科大学 国立 滋賀医科大学 2016年 第3問
$a,\ b$を正の定数とし,$xy$平面上の双曲線
\[ \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \]
を$H$とする.正の実数$r,\ s$に対して,円$C:(x-s)^2+y^2=r^2$を考える.

(1)$C$の中心が$H$の焦点の一つであるとき,すなわち$s=\sqrt{a^2+b^2}$のとき,$C$と$H$は$x>0$において高々$2$点しか共有点を持たないことを示せ.
(2)$C$と$H$が$x>0$において$4$点の共有点を持つような$(r,\ s)$の範囲を,$rs$平面上に図示せよ.
(3)$C$と$H$が$x>0$において$2$点で接するような$(r,\ s)$を考えるとき,極限$\displaystyle \lim_{r \to \infty} \frac{s}{r}$を求めよ.
滋賀医科大学 国立 滋賀医科大学 2016年 第4問
次の問いに答えよ.

(1)実数$a$に対して
\[ f(x)=2x^3-9ax^2+12a^2x \]
とおく.定義域を$\{x \;|\; x \leqq 1 \text{または} x \geqq 4 \}$とする関数$y=f(x)$が逆関数を持つような$a$の範囲を求めよ.
(2)$b$を実数とし,$x \geqq 0$における関数$g(x)$を
\[ g(x)=b \sqrt{\sqrt{8x+1}-1} \]
と定める.$2$つの曲線$y=e^x$と$y=g(x)$はただ$1$点の共有点を持つとする.

(i) $b$を求めよ.
(ii) $2$つの曲線$y=e^x,\ y=g(x)$と$y$軸で囲まれた部分の面積を求めよ.
スポンサーリンク

「実数」とは・・・

 まだこのタグの説明は執筆されていません。