タグ「定点」の検索結果

1ページ目:全71問中1問~10問を表示)
金沢大学 国立 金沢大学 2016年 第2問
曲線$C:x^2+4y^2=4$上を動く点$\mathrm{P}$と,$C$上の定点$\mathrm{Q}(2,\ 0)$,$\mathrm{R}(0,\ 1)$がある.次の問いに答えよ.

(1)$\triangle \mathrm{PQR}$の面積の最大値と,そのときの$\mathrm{P}$の座標を求めよ.
(2)$(1)$で求めた点$\mathrm{P}$に対して直線$\mathrm{PQ}$を考える.曲線$C$によって囲まれた図形を直線$\mathrm{PQ}$で$2$つに分けたとき,直線$\mathrm{PQ}$の下方にある部分の面積を求めよ.
福島大学 国立 福島大学 2016年 第4問
次の方程式で表される二つの直線$\ell_1,\ \ell_2$を考える.

$\ell_1:(a-1)(x+1)-(a+1)y=0$
$\ell_2:ax-y-1=0$


(1)$\ell_1$は$a$の値によらず定点を通る.この定点の座標を求めなさい.
(2)$a$が実数全体を動くときの,$\ell_1$と$\ell_2$の交点の軌跡を求めなさい.
埼玉大学 国立 埼玉大学 2016年 第2問
$a,\ b,\ c$および$d$は実数で,$a>0$,$b<0$,$d \neq 0$とする.また
\[ f(x)=ax+b,\quad g(x)=x^2+cx+d \]
とおく.$xyz$空間内に$3$点$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$があり,点$\mathrm{O}$は原点を表す.点$\mathrm{P}_0(-4,\ 0,\ 4 \sqrt{3})$は定点で,$\mathrm{P}_1$と$\mathrm{P}_2$はそれぞれ実数$t$の値に応じて定まる点$\mathrm{P}_1(-t,\ f(t),\ 2 \sqrt{3})$,$\mathrm{P}_2(t,\ g(t),\ 0)$である.この$3$点$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$が次の$3$条件をみたしているとき,定数$a,\ b,\ c,\ d$の値をすべて求めなさい.


(i) $t=0$のとき,ベクトル$\overrightarrow{\mathrm{OP}}_1$と$\overrightarrow{\mathrm{OP}}_2$のなす角は$\displaystyle \frac{\pi}{3}$である.
(ii) ベクトル$\overrightarrow{\mathrm{OP}}_1$の長さの最小値は$\sqrt{14}$である.
(iii) 点$\mathrm{O}$,$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$は,$t=1$および$t=-3$のとき,それぞれ同一平面上にある.
早稲田大学 私立 早稲田大学 2016年 第1問
次の問に答えよ.

(1)直線$-2x+4y+5=0$を$\ell$とする.点$\mathrm{A}(2,\ 4)$を通り,直線$\ell$に垂直な直線を$m$とし,同じく点$\mathrm{A}$を通り,$x$軸に平行な直線を$n$とする.直線$\ell$と直線$m$の交点を$\mathrm{B}$とし,直線$\ell$と直線$n$の交点を$\mathrm{C}$とするとき,次の各問いに答えよ.

(i) 点$\mathrm{B}$の座標は$([ア],\ [イ])$である.
(ii) 線分$\mathrm{AB}$の長さは$[ウ]$である.
(iii) 直線$\ell$上で線分$\mathrm{CB}$を$2:1$に外分する点を$\mathrm{D}$とし,直線$m$上で線分$\mathrm{AB}$を$3:2$に外分する点を$\mathrm{E}$とするとき,四角形$\mathrm{ACED}$の面積は$[エ]$である.

(2)座標平面上に定点$\mathrm{A}(-1,\ 0)$と$\mathrm{B}(1,\ 0)$が与えられているとし,動点$\mathrm{P}$,$\mathrm{Q}$は,それぞれ$\mathrm{A}$および$\mathrm{B}$とは一致しないところを動くものとするとき,次の各問いに答えよ.

(i) 点$\mathrm{P}(x,\ y)$が$\angle \mathrm{APB}={90}^\circ$を満たすように動くとき,点$\mathrm{P}$の$y$座標の最大値は$[オ]$である.
(ii) 点$\mathrm{Q}(x,\ y)$が$\angle \mathrm{AQB}={120}^\circ$を満たすように動くとき,点$\mathrm{Q}$の$y$座標の最大値は$[カ]$であり,また,点$\mathrm{Q}$が動いてできる曲線に$2$点$\mathrm{A}$,$\mathrm{B}$を付け加えた曲線を$C$とすると,曲線$C$が囲む部分の面積は$[キ]$である.

(3)$a$を正の実数とし,$\displaystyle a \neq \frac{1}{2}$であるとする.曲線$C:y=x^2-2x$上の$2$点$\mathrm{P}$,$\mathrm{Q}$を考える.点$\mathrm{P}$の座標を$\displaystyle \left( \frac{3}{2},\ -\frac{3}{4} \right)$とし,点$\mathrm{Q}$の座標を$(a+1,\ a^2-1)$とする.点$\mathrm{P}$を通り$\mathrm{P}$における$C$の接線に直交する直線を$\ell$とし,点$\mathrm{Q}$を通り$\mathrm{Q}$における$C$の接線に直交する直線を$m$とする.$2$直線$\ell$と$m$の交点が曲線$C$上にあるとき,次の各問いに答えよ.

(i) $a$の値は$[ク]$である.
(ii) $2$直線$\ell$,$m$と曲線$C$とで囲まれた領域で$x \geqq 0$を満たす部分の面積は$[ケ]$である.
名城大学 私立 名城大学 2016年 第4問
$f(x)=2x^3+(a-1)x^2-a+1$($a$は$a \neq 1$を満たす実数)とするとき,次の問に答えよ.

(1)$y=f(x)$のグラフは$a$の値によらず$2$定点を通ることを示し,その座標を求めよ.
(2)$f(x)$の極大値を与える$x$の値$m$を求めよ.
(3)$a$が$a \neq 1$を満たす実数全体を動く.$(2)$の$m$に対し,点$(m,\ f(m))$の軌跡を$xy$平面上に図示せよ.
津田塾大学 私立 津田塾大学 2016年 第3問
$a$を正の定数とし,放物線$C:y=ax^2$上の点$\mathrm{P}(t,\ at^2)$における接線を$\ell_1$とする.ただし,$t>0$である.

(1)$\ell_1$と$x$軸との交点を通り$\ell_1$と直交する直線を$\ell_2$とする.$\ell_2$は$\mathrm{P}$によらない定点を通ることを示せ.
(2)$x$軸に関して$\ell_1$と対称な直線を$\ell_3$とする.$\ell_3$と$C$の$2$つの交点のうち$x$座標が大きい方を$\mathrm{Q}$,$\mathrm{Q}$から$x$軸に下ろした垂線の足を$\mathrm{R}$とするとき,$C$と直線$\mathrm{QR}$と$x$軸とで囲まれた図形の面積を求めよ.
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$a$を実数とする.$3$辺の長さがそれぞれ$a-1,\ a,\ a+1$となる三角形が存在するとき,$a$の値の範囲は$[ア]$である.この三角形が鈍角三角形となる$a$の値の範囲は$[イ]$である.$a=[ウ]$のとき,$1$つの内角が$\displaystyle \frac{2\pi}{3}$となる三角形である.このとき三角形の外接円の半径は$[エ]$であり,内接円の半径は$[オ]$である.
(2)$k$を実数とし,$f(x)=x^4+kx^2+1$とおく.曲線$C_1:y=f(x)$の点$\mathrm{P}(1,\ f(1))$における接線$\ell$の方程式は$y=[カ]$である.直線$\ell$は,$k$の値によらず定点$([キ])$を通る.$k$の値の範囲が$[ク]$のとき,曲線$C_1$と直線$\ell$との共有点の個数は$3$となる.このとき,この$3$つの共有点を通る$3$次関数で定義される曲線のうち,$x^3$の係数が$1$である曲線$C_2$は$y=[ケ]$で表される.$k=-7$のとき,$\ell$と$C_2$で囲まれた$2$つの部分の面積の差の絶対値は$[コ]$である.
明治大学 私立 明治大学 2016年 第3問
放物線$C:y=-x^2+ax$($a$は正の定数)と直線$\ell:y=mx+n$が$2$点$\mathrm{A}$,$\mathrm{B}$で交わっている.$\mathrm{A}$,$\mathrm{B}$の$x$座標を$\alpha,\ \beta$とすると,$0<\alpha<\beta<2a$を満たしている.$x=0$,$C$,$\ell$で囲まれた図形の面積を$T_1$,$C$と$\ell$で囲まれた図形の面積を$T_2$,$x=2a$,$C$,$\ell$で囲まれた図形の面積を$T_3$とする.このとき,
\[ T_2=T_1+T_3 \]
が満たされるとする.以下の各設問に答えよ.

(1)$T_2=T_1+T_3$から,$a,\ m,\ n$の間に関係式
\[ [ ]=0 \]
が成り立つ(もっとも簡潔な式で書くこと).
(2)$T_2=T_1+T_3$を満たす直線$\ell$は$m,\ n$によらず定点$[ ]$を通る.この定点を$a$を用いて表せ.
(3)$T_2$の値が最小となるのは直線$\ell$が$y=[ ]$のときであり,そのとき$T_2$の値は$[ ]$である.
(4)$(3)$のとき$\alpha,\ \beta$の値は
\[ \alpha=[ ]a,\quad \beta=[ ]a \]
である.
東京海洋大学 国立 東京海洋大学 2015年 第2問
等式
\[ f(x)+\int_1^2 (x-kt) f(t) \, dt=17x-28 \cdots\cdots (*) \]
について,次の問に答えよ.

(1)$k=1$のとき,$(*)$を満たす関数$f(x)$を求めよ.
(2)$\displaystyle k=\frac{30}{17}$のとき,$(*)$を満たす関数$f(x)$に対して,$y=f(x)$のグラフは常にある定点を通ることを示し,その定点の座標を求めよ.
富山大学 国立 富山大学 2015年 第1問
$m$を実数とする.方程式
\[ mx^2-my^2+(1-m^2)xy+5(1+m^2)y-25m=0 \cdots\cdots (*) \]
を考える.このとき,次の問いに答えよ.

(1)$xy$平面において,方程式$(*)$が表す図形は$2$直線であることを示せ.
(2)$(1)$で求めた$2$直線は$m$の値にかかわらず,それぞれ定点を通る.これらの定点を求めよ.
(3)$m$が$-1 \leqq m \leqq 3$の範囲を動くとき,$(1)$で求めた$2$直線の交点の軌跡を図示せよ.
スポンサーリンク

「定点」とは・・・

 まだこのタグの説明は執筆されていません。