タグ「外接円」の検索結果

1ページ目:全155問中1問~10問を表示)
北海道大学 国立 北海道大学 2016年 第3問
$\triangle \mathrm{ABC}$が,$\mathrm{AB}=2$,$\mathrm{AC}=1+\sqrt{3}$,$\angle \mathrm{ACB}={45}^\circ$をみたすとする.

(1)$\beta=\angle \mathrm{ABC}$とおくとき,$\sin \beta$および$\cos 2\beta$の値を求めよ.
(2)$(1)$の$\beta$の値をすべて求めよ.
(3)$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とする.$\triangle \mathrm{ABC}$が鋭角三角形であるとき,$\overrightarrow{\mathrm{OC}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$をみたす実数$s,\ t$を求めよ.
山口大学 国立 山口大学 2016年 第3問
$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表すとき,次の問いに答えなさい.

(1)$\triangle \mathrm{ABC}$の外接円の半径を$R$とするとき,$\triangle \mathrm{ABC}$の面積を$a,\ b,\ c,\ R$を用いて表しなさい.
(2)$\triangle \mathrm{ABC}$の内接円の半径を$r$とするとき,$\triangle \mathrm{ABC}$の面積を$a,\ b,\ c,\ r$を用いて表しなさい.
(3)$\triangle \mathrm{ABC}$の外接円と内接円の面積をそれぞれ$S_1,\ S_2$とするとき,$\displaystyle \frac{S_1}{S_2}$を$a,\ b,\ c$を用いて表しなさい.
滋賀医科大学 国立 滋賀医科大学 2016年 第1問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=14$,$\mathrm{BC}=15$,$\mathrm{CA}=13$とし,$\overrightarrow{a}=\overrightarrow{\mathrm{CA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{CB}}$とする.

(1)$\triangle \mathrm{ABC}$の重心$\mathrm{G}$について$\overrightarrow{\mathrm{CG}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)$\triangle \mathrm{ABC}$の垂心$\mathrm{H}$について$\overrightarrow{\mathrm{CH}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(3)$\triangle \mathrm{ABC}$の外接円の半径を求め,外心$\mathrm{O}$について$\overrightarrow{\mathrm{CO}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(4)$\triangle \mathrm{ABC}$の内接円の半径を求め,外心$\mathrm{I}$について$\overrightarrow{\mathrm{CI}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
山口大学 国立 山口大学 2016年 第3問
$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表すとき,次の問いに答えなさい.

(1)$\triangle \mathrm{ABC}$の外接円の半径を$R$とするとき,$\triangle \mathrm{ABC}$の面積を$a,\ b,\ c,\ R$を用いて表しなさい.
(2)$\triangle \mathrm{ABC}$の内接円の半径を$r$とするとき,$\triangle \mathrm{ABC}$の面積を$a,\ b,\ c,\ r$を用いて表しなさい.
(3)$\triangle \mathrm{ABC}$の外接円と内接円の面積をそれぞれ$S_1,\ S_2$とするとき,$\displaystyle \frac{S_1}{S_2}$を$a,\ b,\ c$を用いて表しなさい.
名城大学 私立 名城大学 2016年 第2問
$\triangle \mathrm{ABC}$は$\mathrm{AB}=5$,$\mathrm{BC}=7$,$\mathrm{AC}=3$とする.そして,辺$\mathrm{BC}$上に点$\mathrm{D}$をとる.また,$\triangle \mathrm{ABC}$の外接円の半径を$r_1$,$\triangle \mathrm{ACD}$の外接円の半径を$r_2$とする.次の問に答えよ.

(1)$\cos \angle \mathrm{ABC}$の値を求めよ.
(2)$r_1$の値を求めよ.
(3)$\displaystyle \frac{r_1}{r_2}=2$のとき,$\sin \angle \mathrm{ADC}$の値を求めよ.また,線分$\mathrm{AD}$の長さを求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
次の$[ ]$にあてはまる最も適当な数を記入しなさい.

三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{BC}=9$,$\mathrm{CA}=9$とする.
このとき$\cos \angle \mathrm{A}=[チ]$であり,三角形$\mathrm{ABC}$の外接円の半径は$[ツ]$である.
この三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の二等分線と三角形$\mathrm{ABC}$の外接円との交点で$\mathrm{A}$とは異なる点を$\mathrm{D}$とする.このとき$\angle \mathrm{BAD}$の大きさを$\theta$(ただし,$0^\circ<\theta<{90}^\circ$)とすると$\sin \theta=[テ]$であり,線分$\mathrm{BD}$の長さは$[ト]$である.また,四角形$\mathrm{ABDC}$の面積は$[ナ]$である.
明治大学 私立 明治大学 2016年 第6問
次の設問の$[ ]$に適当な数を入れなさい.

$\triangle \mathrm{ABC}$において,$\mathrm{AB}=\sqrt{3}+1$,$\mathrm{BC}=2$,$\mathrm{CA}=\sqrt{6}$である.また,$\angle \mathrm{B}$の二等分線と辺$\mathrm{CA}$との交点を$\mathrm{D}$とする.

(1)$\cos A=[ ]$である.
(2)線分$\mathrm{AD}$の長さは$[ ]$である.
(3)線分$\mathrm{BD}$の長さは$[ ]$である.
(4)$\triangle \mathrm{ABC}$の外接円の半径は$[ ]$である.
(5)$\triangle \mathrm{ABC}$の内接円の半径は$[ ]$である.
神戸薬科大学 私立 神戸薬科大学 2016年 第5問
$xy$平面上に$3$点$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(3,\ -2)$,$\mathrm{C}(5,\ 0)$があった.

(1)直線$\mathrm{AB}$と点$\mathrm{C}$の距離を求めると$[チ]$である.
(2)$\triangle \mathrm{ABC}$の面積を求めると$[ツ]$である.
(3)$\triangle \mathrm{ABC}$の外接円の方程式を求めると$[テ]$である.
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$a$を実数とする.$3$辺の長さがそれぞれ$a-1,\ a,\ a+1$となる三角形が存在するとき,$a$の値の範囲は$[ア]$である.この三角形が鈍角三角形となる$a$の値の範囲は$[イ]$である.$a=[ウ]$のとき,$1$つの内角が$\displaystyle \frac{2\pi}{3}$となる三角形である.このとき三角形の外接円の半径は$[エ]$であり,内接円の半径は$[オ]$である.
(2)$k$を実数とし,$f(x)=x^4+kx^2+1$とおく.曲線$C_1:y=f(x)$の点$\mathrm{P}(1,\ f(1))$における接線$\ell$の方程式は$y=[カ]$である.直線$\ell$は,$k$の値によらず定点$([キ])$を通る.$k$の値の範囲が$[ク]$のとき,曲線$C_1$と直線$\ell$との共有点の個数は$3$となる.このとき,この$3$つの共有点を通る$3$次関数で定義される曲線のうち,$x^3$の係数が$1$である曲線$C_2$は$y=[ケ]$で表される.$k=-7$のとき,$\ell$と$C_2$で囲まれた$2$つの部分の面積の差の絶対値は$[コ]$である.
獨協医科大学 私立 獨協医科大学 2016年 第3問
三角形$\mathrm{ABC}$について,$\mathrm{AB}=5$,$\mathrm{BC}=7$,$\mathrm{CA}=8$とする.このとき
\[ \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[アイ] \]
である.$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.このとき
\[ \overrightarrow{\mathrm{AD}}=\frac{[ウ]}{[エオ]} \overrightarrow{\mathrm{AB}}+\frac{[カ]}{[キク]} \overrightarrow{\mathrm{AC}} \]
である.

また,三角形$\mathrm{ABC}$の内接円の中心を$\mathrm{I}$,外接円の中心を$\mathrm{O}$とすると


$\displaystyle \overrightarrow{\mathrm{AI}}=\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{AB}}+\frac{[サ]}{[シ]} \overrightarrow{\mathrm{AC}}$

$\displaystyle \overrightarrow{\mathrm{AO}}=\frac{[ス]}{[セソ]} \overrightarrow{\mathrm{AB}}+\frac{[タチ]}{[ツテ]} \overrightarrow{\mathrm{AC}}$


である.
したがって
\[ |\overrightarrow{\mathrm{OI|}}^2=\frac{[ト]}{[ナ]} \]
である.
三角形$\mathrm{ABC}$の外接円の周上を動く点$\mathrm{P}$と内接円の周上を動く点$\mathrm{Q}$があるとき,線分$\mathrm{PQ}$の長さの最大値は
\[ \frac{[ニヌ]+\sqrt{[ネ]}}{\sqrt{[ノ]}} \]
である.
スポンサーリンク

「外接円」とは・・・

 まだこのタグの説明は執筆されていません。