タグ「原点」の検索結果

7ページ目:全992問中61問~70問を表示)
愛媛大学 国立 愛媛大学 2016年 第4問
$f(x)=xe^{-x}$とし,関数$y=f(x)$のグラフを$C_1$とする.また,$C_1$を$x$軸方向に$\log a$だけ平行移動したグラフを$C_2$とする.ただし,$a$は$a>1$を満たす実数である.

(1)関数$y=f(x)$の増減,極値を調べ$C_1$の概形をかけ.なお,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$であることを用いてよい.
(2)$C_1$と$C_2$の交点の$x$座標を求めよ.
(3)原点を$\mathrm{O}$とし,$C_2$と$x$軸の交点を$\mathrm{A}$とする.$C_1$,$C_2$および線分$\mathrm{OA}$で囲まれた部分の面積$S$を求めよ.
(4)$(3)$で求めた$S$に対して,$\displaystyle S<\frac{a-1}{a}$が成り立つことを示せ.
愛媛大学 国立 愛媛大学 2016年 第1問
空間内の$2$点$\mathrm{A}(4,\ -2,\ 2)$,$\mathrm{B}(2,\ -4,\ 4)$に対して,線分$\mathrm{AB}$を直径とする球$S$の中心を$\mathrm{C}$とする.

(1)球$S$の方程式を求めよ.
(2)$xy$平面と平行な平面$\alpha$のうち$S$と$\alpha$が交わってできる円の半径が最大となるような$\alpha$の方程式を求めよ.
(3)原点$\mathrm{O}$から最も近い$S$上の点$\mathrm{D}$,および最も遠い点$\mathrm{E}$の座標をそれぞれ求めよ.
(4)$(2)$で求めた$\alpha$と$S$が交わってできる円上を動く点$\mathrm{P}$に対して,$\triangle \mathrm{CDP}$の面積を最大とする$\mathrm{P}$の座標をすべて求めよ.ただし,$\mathrm{D}$は$(3)$で求めた点である.
愛媛大学 国立 愛媛大学 2016年 第3問
$f(x)=xe^{-x}$とし,関数$y=f(x)$のグラフを$C_1$とする.また,$C_1$を$x$軸方向に$\log a$だけ平行移動したグラフを$C_2$とする.ただし,$a$は$a>1$を満たす実数である.

(1)関数$y=f(x)$の増減,極値を調べ$C_1$の概形をかけ.なお,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$であることを用いてよい.
(2)$C_1$と$C_2$の交点の$x$座標を求めよ.
(3)原点を$\mathrm{O}$とし,$C_2$と$x$軸の交点を$\mathrm{A}$とする.$a=2$のとき$C_1$,$C_2$および線分$\mathrm{OA}$で囲まれた部分の面積$S$を求めよ.
旭川医科大学 国立 旭川医科大学 2016年 第2問
原点$\mathrm{O}$を中心とする単位円周上に$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$,および$y>0$を満たす動点$\mathrm{C}(x,\ y)$がある.$\angle \mathrm{BAC}=\theta$とするとき,次の問いに答えよ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.

(1)$\triangle \mathrm{ABC}$の面積を$\theta$を用いて表せ.
(2)$\triangle \mathrm{ABC}$の内接円$\mathrm{O}_1$の半径$r_1$を$\theta$を用いて表せ.
(3)$x$軸,辺$\mathrm{AC}$の延長線,および辺$\mathrm{BC}$とそれぞれ接する円$\mathrm{O}_2$を考える.$x$軸上の接点を$\mathrm{D}$,辺$\mathrm{AC}$の$\mathrm{C}$側の延長上の接点を$\mathrm{E}$,そして辺$\mathrm{BC}$上の接点を$\mathrm{F}$とする.

(i) $\mathrm{AD}$の長さを$\theta$を用いて表せ.
(ii) 円$\mathrm{O}_2$の半径$r_2$を$\theta$を用いて表せ.
(iii) 円$\mathrm{O}_1$の中心を$\mathrm{I}$,円$\mathrm{O}_2$の中心を$\mathrm{J}$とする.$\displaystyle \frac{r_2}{r_1}=2$となるとき,$\triangle \mathrm{OIJ}$の面積を求めよ.
愛媛大学 国立 愛媛大学 2016年 第4問
空間内の$2$点$\mathrm{A}(4,\ -2,\ 2)$,$\mathrm{B}(2,\ -4,\ 4)$に対して,線分$\mathrm{AB}$を直径とする球$S$の中心を$\mathrm{C}$とする.

(1)球$S$の方程式を求めよ.
(2)$xy$平面と平行な平面$\alpha$のうち$S$と$\alpha$が交わってできる円の半径が最大となるような$\alpha$の方程式を求めよ.
(3)原点$\mathrm{O}$から最も近い$S$上の点$\mathrm{D}$,および最も遠い点$\mathrm{E}$の座標をそれぞれ求めよ.
(4)$(2)$で求めた$\alpha$と$S$が交わってできる円上を動く点$\mathrm{P}$に対して,$\triangle \mathrm{CDP}$の面積を最大とする$\mathrm{P}$の座標をすべて求めよ.ただし,$\mathrm{D}$は$(3)$で求めた点である.
愛媛大学 国立 愛媛大学 2016年 第5問
$f(x)=xe^{-x}$とし,関数$y=f(x)$のグラフを$C_1$とする.また,$C_1$を$x$軸方向に$\log a$だけ平行移動したグラフを$C_2$とする.ただし,$a$は$a>1$を満たす実数である.

(1)関数$y=f(x)$の増減,極値を調べ$C_1$の概形をかけ.なお,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$であることを用いてよい.
(2)$C_1$と$C_2$の交点の$x$座標を求めよ.
(3)原点を$\mathrm{O}$とし,$C_2$と$x$軸の交点を$\mathrm{A}$とする.$C_1$,$C_2$および線分$\mathrm{OA}$で囲まれた部分の面積$S$を求めよ.
(4)$(3)$で求めた$S$に対して,$\displaystyle S<\frac{a-1}{a}$が成り立つことを示せ.
愛媛大学 国立 愛媛大学 2016年 第4問
空間内の$2$点$\mathrm{A}(4,\ -2,\ 2)$,$\mathrm{B}(2,\ -4,\ 4)$に対して,線分$\mathrm{AB}$を直径とする球$S$の中心を$\mathrm{C}$とする.

(1)球$S$の方程式を求めよ.
(2)$xy$平面と平行な平面$\alpha$のうち$S$と$\alpha$が交わってできる円の半径が最大となるような$\alpha$の方程式を求めよ.
(3)原点$\mathrm{O}$から最も近い$S$上の点$\mathrm{D}$,および最も遠い点$\mathrm{E}$の座標をそれぞれ求めよ.
(4)$(2)$で求めた$\alpha$と$S$が交わってできる円上を動く点$\mathrm{P}$に対して,$\triangle \mathrm{CDP}$の面積を最大とする$\mathrm{P}$の座標をすべて求めよ.ただし,$\mathrm{D}$は$(3)$で求めた点である.
帯広畜産大学 国立 帯広畜産大学 2016年 第1問
原点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円$C$上に点$\mathrm{P}$をとり,点$\mathrm{P}$における円$C$の接線$L$の方程式を$y=ax+b$とする.接線$L$は,$x$軸と点$\mathrm{A}$で,$y$軸と点$\mathrm{B}$で交わり,$\triangle \mathrm{AOB}$の面積を$S$とする.また,$x$軸の正の向きを始線とし,それと直線$\mathrm{OP}$のなす正の角を$\theta$で表す.ただし,
\[ a>0,\quad b>0 \quad \cdots\cdots \quad (*) \]
とする.次の各問に答えなさい.

(1)$(ⅰ)$ 直線$\mathrm{OP}$の傾きを$a$を用いて表しなさい.
$(ⅱ)$ $a,\ b$を$\sin \theta$を用いて表しなさい.
$(ⅲ)$ $S$を$\sin 2\theta$を用いて表しなさい.
(2)$\displaystyle \theta=\frac{2 \pi}{3}$とする.
$(ⅰ)$ $a,\ b,\ S$の値をそれぞれ求めなさい.
$(ⅱ)$ 点$\mathrm{A}$と点$\mathrm{B}$の座標を求めなさい.
$(ⅲ)$ $\tan 2\theta$の値を求めなさい.
(3)$\theta<2\pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$と$S$のそれぞれの値を求めなさい.
(4)$\theta<200 \pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$がとりうるすべての値の和を$\pi$を用いて表しなさい.
帯広畜産大学 国立 帯広畜産大学 2016年 第2問
関数$f(x)=x^2-4x+5$を用いて,放物線$C:y=f(x)$が定義されている.放物線$C$上の点$\mathrm{P}$の$x$座標を$t$とし,原点$\mathrm{O}(0,\ 0)$と$x$軸上の点$\mathrm{Q}(t,\ 0)$を考える.ただし,$t>0$とする.次の各問に答えなさい.

(1)線分$\mathrm{OQ}$と線分$\mathrm{PQ}$の長さの和を$t$の関数として$L(t)$で表す.

(i) $L(t)$を$t$の式で表しなさい.
(ii) $L(t)$が最小値をとるとき,$t$と$L(t)$の値をそれぞれ求めなさい.

(2)放物線$C$の頂点を$\mathrm{A}$とする.

(i) 点$\mathrm{A}$の座標を求めなさい.
(ii) 直線$\mathrm{OP}$が点$\mathrm{A}$を通るとき,直線$\mathrm{OP}$と放物線$C$で囲まれた部分の面積を求めなさい.
(iii) 直線$\mathrm{OP}$が放物線$C$の接線となるとき,$t$の値と直線$\mathrm{OP}$の方程式を求めなさい.

(3)$\triangle \mathrm{OPQ}$の面積を$t$の関数として$S_1(t)$で表す.また,直線$\mathrm{OP}$と放物線$C$および$y$軸で囲まれた部分の面積を$t$の関数として$S_2(t)$で表す.ただし,$0<t \leqq 2$とする.

(i) $S_1(t)$を$t$の式で表しなさい.また,関数$S_1(t)$の導関数$S_1^\prime(t)$を求めなさい.
(ii) $S_1(t)$の極大点と極小点をそれぞれ求めなさい.
(iii) $S_2(t)$の最大値を求めなさい.
豊橋技術科学大学 国立 豊橋技術科学大学 2016年 第2問
$xy$平面上で原点$\mathrm{O}$を中心とする半径$r$の円周上の点$\mathrm{P}$について,以下の問いに答えよ.なお,点$\mathrm{A}$の座標を$(r,\ 0)$,$\angle \mathrm{AOP}$の値を$\theta$とする.
(図は省略)

(1)点$\mathrm{P}$の座標を求めよ.
(2)点$\mathrm{P}$を通り,この円に接する接線$\ell$の方程式を求めよ.
(3)接線$\ell$上の点$\mathrm{R}$と点$\mathrm{Q}(-r,\ 0)$を結んだ線分の長さが最小になるときの点$\mathrm{R}$の座標を求めよ.ただし,点$\mathrm{P}$は点$\mathrm{Q}$と異なるものとする.
(4)接線$\ell$に関して,点$\mathrm{Q}$と対称な点$\mathrm{S}$の座標を求めよ.ただし,点$\mathrm{P}$は点$\mathrm{Q}$と異なるものとする.
(5)$r=1$,$\displaystyle \theta=\frac{\pi}{3}$のとき,接線$\ell$に関して,直線$y=0$と対称な直線の方程式を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。