タグ「分数」の検索結果

30ページ目:全4648問中291問~300問を表示)
帯広畜産大学 国立 帯広畜産大学 2016年 第1問
原点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円$C$上に点$\mathrm{P}$をとり,点$\mathrm{P}$における円$C$の接線$L$の方程式を$y=ax+b$とする.接線$L$は,$x$軸と点$\mathrm{A}$で,$y$軸と点$\mathrm{B}$で交わり,$\triangle \mathrm{AOB}$の面積を$S$とする.また,$x$軸の正の向きを始線とし,それと直線$\mathrm{OP}$のなす正の角を$\theta$で表す.ただし,
\[ a>0,\quad b>0 \quad \cdots\cdots \quad (*) \]
とする.次の各問に答えなさい.

(1)$(ⅰ)$ 直線$\mathrm{OP}$の傾きを$a$を用いて表しなさい.
$(ⅱ)$ $a,\ b$を$\sin \theta$を用いて表しなさい.
$(ⅲ)$ $S$を$\sin 2\theta$を用いて表しなさい.
(2)$\displaystyle \theta=\frac{2 \pi}{3}$とする.
$(ⅰ)$ $a,\ b,\ S$の値をそれぞれ求めなさい.
$(ⅱ)$ 点$\mathrm{A}$と点$\mathrm{B}$の座標を求めなさい.
$(ⅲ)$ $\tan 2\theta$の値を求めなさい.
(3)$\theta<2\pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$と$S$のそれぞれの値を求めなさい.
(4)$\theta<200 \pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$がとりうるすべての値の和を$\pi$を用いて表しなさい.
愛媛大学 国立 愛媛大学 2016年 第1問
次の問いに答えよ.

(1)$2m^2-n^2-mn-m+n=18$を満たす自然数$m,\ n$を求めよ.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$のとき$\displaystyle \log_{\cos \theta} \left( \tan^2 \theta+\frac{\tan \theta}{\cos \theta}+\frac{1}{3} \right)=-2$を満たす$\theta$を求めよ.
(3)袋の中に$1,\ 2,\ 3,\ 4,\ 5$の数字が$1$つずつ書かれた$5$個の玉が入っている.$5$人が順にこの袋の中から玉を$1$個ずつ取り出し,玉に書かれた数字を記録する.この操作が終了したら,すべての玉を袋の中に戻し,同じ操作をもう一度行う.このとき,$1$回目と$2$回目に取り出した玉に書かれた数字が同じであるという人がちょうど$3$人になる確率を求めよ.
(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 |t-x| \, dt$を最小にする$x$の値を求めよ.
愛媛大学 国立 愛媛大学 2016年 第2問
次の問いに答えよ.

(1)$a,\ b$を正の実数とする.楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる楕円が$y$軸と直線$y=x$に接するような$a,\ b$を求めよ.
(2)$1$辺の長さが$\sqrt{n}$の正$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$における三角形$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3$の面積を$S_n$とする.このとき$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(3)$a,\ b$は実数で$a>0$を満たすとする.放物線$\displaystyle y=\frac{1}{2a^2}x^2$と曲線$y=\log x+b$がただ$1$つの共有点$\mathrm{P}$をもつとき,$\mathrm{P}$の座標および$b$を$a$を用いて表せ.

(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 \frac{|t-x|}{t^2} \, dt$を最小にする$x$の値を求めよ.
愛媛大学 国立 愛媛大学 2016年 第1問
次の問いに答えよ.

(1)$2m^2-n^2-mn-m+n=18$を満たす自然数$m,\ n$を求めよ.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$のとき$\displaystyle \log_{\cos \theta} \left( \tan^2 \theta+\frac{\tan \theta}{\cos \theta}+\frac{1}{3} \right)=-2$を満たす$\theta$を求めよ.
(3)袋の中に$1,\ 2,\ 3,\ 4,\ 5$の数字が$1$つずつ書かれた$5$個の玉が入っている.$5$人が順にこの袋の中から玉を$1$個ずつ取り出し,玉に書かれた数字を記録する.この操作が終了したら,すべての玉を袋の中に戻し,同じ操作をもう一度行う.このとき,$1$回目と$2$回目に取り出した玉に書かれた数字が同じであるという人がちょうど$3$人になる確率を求めよ.
(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 |t-x| \, dt$を最小にする$x$の値を求めよ.
茨城大学 国立 茨城大学 2016年 第1問
$a$を定数とし,関数$f(x)=(x-a)e^{\frac{x^2}{2}}$で表される曲線$y=f(x)$を$C$とする.ただし,$e$は自然対数の底とする.以下の各問に答えよ.

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$f(x)$が極値を持たないために$a$が満たすべき条件を求めよ.
(3)曲線$C$上の点$(t,\ f(t))$における接線の方程式を求めよ.
(4)$(3)$で求めた接線が原点を通るような$t$の値を考える.すべての実数の中で,そのような$t$の値が$3$つあるために$a$が満たすべき条件を求めよ.
茨城大学 国立 茨城大学 2016年 第1問
以下の各問に答えよ.ただし,対数は自然対数であり,$e$は自然対数の底である.

(1)曲線$\displaystyle C:y=\frac{e^x+e^{-x}}{2}$について,傾きが$1$である接線を$\ell$とする.$C$と$\ell$との接点の座標を求めよ.

(2)実数$\alpha,\ \beta$が$0<\alpha<\beta<1$を満たすとき,$2$つの実数$\displaystyle \frac{e^\alpha-\alpha}{\alpha}$と$\displaystyle \frac{e^\beta-\beta}{\beta}$の大小関係を不等号を用いて表せ.

(3)定積分$\displaystyle \int_0^{e-1} x \log (x+1) \, dx$を求めよ.
茨城大学 国立 茨城大学 2016年 第3問
$a$を実数の定数とする.$\displaystyle f(x)=x^3-ax^2+\frac{1}{3}(a^2-4)x$とおくとき,以下の各問に答えよ.

(1)定数$a$の値にかかわらず関数$y=f(x)$は必ず極値をもつことを証明せよ.
(2)$3$次方程式$f(x)=0$が$-1<x<2$の範囲に相異なる$3$個の実数解をもつように,定数$a$の値の範囲を定めよ.
愛媛大学 国立 愛媛大学 2016年 第3問
$\displaystyle f(x)=\frac{x}{2}$,$g(x)=x$,$\displaystyle h(x)=\frac{x+1}{2}$とおく.$x_0=1$とし,$2$枚の硬貨を繰り返して投げ,$n$回目の事象により$x_n$を次のように定める.
\[ x_n=\left\{ \begin{array}{lll}
f(x_{n-1}) & & (2 \text{枚とも表のとき}) \\
g(x_{n-1}) & & (\text{$1$枚が表,$1$枚が裏のとき}) \phantom{\frac{[ ]}{[ ]}} \\
h(x_{n-1}) & & (\text{$2$枚とも裏のとき})
\end{array} \right. \]
また,$p_n,\ q_n,\ r_n$をそれぞれ$\displaystyle 0<x_n \leqq \frac{1}{3}$である確率,$\displaystyle \frac{1}{3}<x_n \leqq \frac{2}{3}$である確率,$\displaystyle \frac{2}{3}<x_n \leqq 1$である確率とする.

(1)すべての自然数$n$に対して$0<x_n \leqq 1$を示せ.
(2)$p_1,\ q_1,\ r_1$を求めよ.
(3)$p_n,\ q_n,\ r_n$を$p_{n-1},\ q_{n-1},\ r_{n-1}$を用いて表せ.
(4)$p_n-r_n$を求めよ.
(5)$p_n$を求めよ.
愛媛大学 国立 愛媛大学 2016年 第4問
$z_0$を虚数単位$i$と異なる複素数とする.複素数$z_n$を
\[ z_n=i+\frac{\sqrt{2}(z_{n-1}-i)(1+i)}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.

(1)すべての自然数$n$に対し$z_n \neq i$であることを示せ.
(2)$\displaystyle \frac{z_n-i}{z_{n-1}-i}$の絶対値$r$と偏角$\theta$を求めよ.ただし,$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(3)$z_m=z_0$となる最小の自然数$m$を求めよ.
(4)複素数平面上において$z_n$の表す点を$\mathrm{P}_n$とする.$(3)$で求めた$m$に対し$m$本の線分$\mathrm{P}_0 \mathrm{P}_1$,$\mathrm{P}_1 \mathrm{P}_2$,$\cdots$,$\mathrm{P}_{m-1} \mathrm{P}_m$で囲まれる図形の面積を$S$とする.$z_0=1-i$のとき$S$の値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2016年 第1問
\begin{mawarikomi}{50mm}{(図は省略)}
$1$辺の長さが$a$の正方形$\mathrm{S}_1$に内接する円を描き,この円に内接する正方形$\mathrm{S}_2$を描いて,正方形$\mathrm{S}_1$から正方形$\mathrm{S}_2$を除いた領域$\mathrm{B}_1$を黒く塗る.次に正方形$\mathrm{S}_2$に内接する円を描き,この円に内接する正方形$\mathrm{S}_3$を描いて,正方形$\mathrm{S}_2$から正方形$\mathrm{S}_3$を除いた領域$\mathrm{W}_1$を白く塗る.同様に$m$番目の正方形$\mathrm{S}_m$の内接円に内接する正方形$\mathrm{S}_{m+1}$を描き,正方形$\mathrm{S}_m$から正方形$\mathrm{S}_{m+1}$を除いた領域を黒,白,黒,白と交互に塗ることを繰り返す.ただし,$m$は自然数であるとする.以下の問いに答えよ.
\end{mawarikomi}

(1)$\mathrm{S}_1$から$\mathrm{S}_2$を除いた黒い領域$\mathrm{B}_1$の面積を$a$を用いて表せ.
(2)$\mathrm{S}_2$から$\mathrm{S}_3$を除いた白い領域$\mathrm{W}_1$の面積を$a$を用いて表せ.
(3)$1$番目の黒い領域$\mathrm{B}_1$から$n$番目の黒い領域$\mathrm{B}_n$までの面積の和を$a$と$n$を用いて表せ.ただし,$n$は自然数であるとする.
(4)黒い領域$\mathrm{B}_1$から$\mathrm{B}_n$までの面積の和において,$n \to \infty$としたときの極限$P$を$a$を用いて表せ.
(5)$1$番目の白い領域$\mathrm{W}_1$から$n$番目の白い領域$\mathrm{W}_n$までの面積の和を求め,$n \to \infty$としたときの極限$Q$を$a$を用いて表せ.次に$\displaystyle \frac{P}{Q}$の値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。