タグ「傾き」の検索結果

1ページ目:全242問中1問~10問を表示)
山形大学 国立 山形大学 2016年 第2問
$n$を自然数とし,放物線$y=-x^2+nx$を$C$とする.このとき,次の問に答えよ.

(1)放物線$C$上の点$(1,\ n-1)$における接線の傾きを$a$とする.$0 \leqq a \leqq 3$を満たす$n$をすべて求めよ.
(2)関数$y=-x^2+nx$の最大値を$M$とする.$1 \leqq M \leqq 5$を満たす$n$をすべて求めよ.
(3)放物線$C$と直線$y=-x$で囲まれた図形の面積を$S$とする.$S \leqq 36$を満たす$n$をすべて求めよ.
(4)$n \geqq 7$とする.放物線$C$の$x \geqq 6$の部分と$x$軸および直線$x=6$で囲まれた図形の面積を$T$とする.$T \leqq 72$を満たす$n$をすべて求めよ.
山形大学 国立 山形大学 2016年 第2問
$n$を自然数とし,放物線$y=-x^2+nx$を$C$とする.このとき,次の問に答えよ.

(1)放物線$C$上の点$(1,\ n-1)$における接線の傾きを$a$とする.$0 \leqq a \leqq 3$を満たす$n$をすべて求めよ.
(2)関数$y=-x^2+nx$の最大値を$M$とする.$1 \leqq M \leqq 5$を満たす$n$をすべて求めよ.
(3)放物線$C$と直線$y=-x$で囲まれた図形の面積を$S$とする.$S \leqq 36$を満たす$n$をすべて求めよ.
(4)$n \geqq 7$とする.放物線$C$の$x \geqq 6$の部分と$x$軸および直線$x=6$で囲まれた図形の面積を$T$とする.$T \leqq 72$を満たす$n$をすべて求めよ.
熊本大学 国立 熊本大学 2016年 第4問
$a,\ b$を実数とし,曲線$C:y=x^3-3ax^2+bx$を考える.$C$の接線の傾きの最小値が$-3$であるとき,以下の問いに答えよ.

(1)$b$を$a$を用いて表せ.
(2)$C$が$x$軸の正の部分,負の部分とそれぞれ$1$点で交わるとする.このとき$a$の値の範囲を求めよ.
(3)$a$が$(2)$で求めた範囲にあるとき,$C$と$x$軸で囲まれた図形の面積の最小値を求め,そのときの$a$の値を求めよ.
福岡教育大学 国立 福岡教育大学 2016年 第4問
$a$は正の定数とする.関数$f(x)=ax-x \log x$の最大値が$1$であるとする.次の問いに答えよ.

(1)$a$の値を求めよ.
(2)曲線$y=f(x)$の接線のうち,傾きが$\displaystyle -\frac{1}{2}$であるものを求めよ.
(3)曲線$y=f(x)$と$x$軸および$(2)$で求めた接線によって囲まれる部分の面積を求めよ.
旭川医科大学 国立 旭川医科大学 2016年 第3問
$a$を正の実数とする.点$\mathrm{P}$は曲線$C_a:y=e^{ax}$上を,点$\mathrm{Q}$は直線$y=x$をそれぞれ動く.このとき,次の問いに答えよ.

(1)曲線$C_a$と直線$y=x$が共有点をもたないような$a$の値の範囲を求めよ.
(2)$(1)$で求めた範囲にある$a$に対して,線分$\mathrm{PQ}$の長さの最小値を$d(a)$とする.$\mathrm{PQ}$の長さが$d(a)$となる曲線$C_a$上の点を$\mathrm{P}_a$とする.

(i) $d(a)$を求めよ.
(ii) 点$\mathrm{P}_a$における曲線$C_a$の接線の傾きを求めよ.
(iii) $a$が$(1)$で求めた範囲を動くときの点$\mathrm{P}_a$の軌跡を求め,その概形を図示せよ.

(3)$d(a)$の最大値と,そのときの$a$の値を求めよ.
帯広畜産大学 国立 帯広畜産大学 2016年 第1問
原点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円$C$上に点$\mathrm{P}$をとり,点$\mathrm{P}$における円$C$の接線$L$の方程式を$y=ax+b$とする.接線$L$は,$x$軸と点$\mathrm{A}$で,$y$軸と点$\mathrm{B}$で交わり,$\triangle \mathrm{AOB}$の面積を$S$とする.また,$x$軸の正の向きを始線とし,それと直線$\mathrm{OP}$のなす正の角を$\theta$で表す.ただし,
\[ a>0,\quad b>0 \quad \cdots\cdots \quad (*) \]
とする.次の各問に答えなさい.

(1)$(ⅰ)$ 直線$\mathrm{OP}$の傾きを$a$を用いて表しなさい.
$(ⅱ)$ $a,\ b$を$\sin \theta$を用いて表しなさい.
$(ⅲ)$ $S$を$\sin 2\theta$を用いて表しなさい.
(2)$\displaystyle \theta=\frac{2 \pi}{3}$とする.
$(ⅰ)$ $a,\ b,\ S$の値をそれぞれ求めなさい.
$(ⅱ)$ 点$\mathrm{A}$と点$\mathrm{B}$の座標を求めなさい.
$(ⅲ)$ $\tan 2\theta$の値を求めなさい.
(3)$\theta<2\pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$と$S$のそれぞれの値を求めなさい.
(4)$\theta<200 \pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$がとりうるすべての値の和を$\pi$を用いて表しなさい.
茨城大学 国立 茨城大学 2016年 第1問
以下の各問に答えよ.ただし,対数は自然対数であり,$e$は自然対数の底である.

(1)曲線$\displaystyle C:y=\frac{e^x+e^{-x}}{2}$について,傾きが$1$である接線を$\ell$とする.$C$と$\ell$との接点の座標を求めよ.

(2)実数$\alpha,\ \beta$が$0<\alpha<\beta<1$を満たすとき,$2$つの実数$\displaystyle \frac{e^\alpha-\alpha}{\alpha}$と$\displaystyle \frac{e^\beta-\beta}{\beta}$の大小関係を不等号を用いて表せ.

(3)定積分$\displaystyle \int_0^{e-1} x \log (x+1) \, dx$を求めよ.
福井大学 国立 福井大学 2016年 第2問
原点を$\mathrm{O}$とする座標平面上に,$\mathrm{F}(5,\ 0)$を焦点の$1$つとし,直線$\ell:y=kx$と$\ell^\prime:y=-kx$とを漸近線にもつ双曲線$C$がある.ただし,$k>0$とする.$C$上の点$\mathrm{Q}(a,\ b)$を通り,$2$本の漸近線に平行な$2$直線のうち,傾きが正のものを$m$,傾きが負のものを$m^\prime$とする.$\ell$と$m^\prime$との交点を$\mathrm{P}$,$\ell^\prime$と$m$との交点を$\mathrm{R}$とし,四角形$\mathrm{OPQR}$の面積を$S$とおくとき,以下の問いに答えよ.

(1)双曲線$C$の方程式を$k$を用いて表せ.
(2)点$\mathrm{P}$,$\mathrm{R}$の座標を,$a,\ b,\ k$を用いて表せ.
(3)$S$は点$\mathrm{Q}$のとり方によらないことを証明せよ.
(4)$k$が$k>0$の範囲を動くとき,$S$の最大値とそのときの$k$の値を求めよ.
日本医科大学 私立 日本医科大学 2016年 第2問
次の関数$f(x)$(ただし$x>0$)に関する以下の各問いに答えよ.
\[ f(x)=\int_1^x t(x-t+1)e^{-{(x-t+1)}^2} \, dt \]

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)関数$g(x)$を$\displaystyle g(x)=\frac{1}{2}(e^{-1}-e^{-x^2})$とするとき,$f(x)$と$g(x)$の$x>0$における大小関係を調べよ.
(3)$(2)$の$g(x)$に対して,傾きが$f^\prime(x)-g^\prime(x)$の$x=\sqrt{2}$における値に等しく,点$(1,\ 0)$を通る直線を考えることにより,不等式
\[ 0.115<f(\sqrt{2})<0.165 \]
が成り立つことを示せ.ただし,$0.367<e^{-1}<0.368$,$0.135<e^{-2}<0.136$であることは用いてよい.
早稲田大学 私立 早稲田大学 2016年 第2問
放物線$y=x^2$上の異なる$2$点を$\mathrm{P}_1(\alpha,\ \alpha^2)$,$\mathrm{P}_2(\beta,\ \beta^2)$とする.ただし$\alpha<\beta$とする.線分$\mathrm{P}_1 \mathrm{P}_2$上の点$\mathrm{P}(a,\ b)$に対し,$S(a,\ b)=b-a^2$とする.次の設問に答えよ.

(1)$S(a,\ b)$の最大値$M(\alpha,\ \beta)$を求めよ.
(2)次の条件$(ⅰ)$,$(ⅱ)$を満たす線分$\mathrm{P}_1 \mathrm{P}_2$上の点の存在範囲の面積を求めよ.

(i) $\displaystyle M(\alpha,\ \beta)=\frac{1}{4}$
(ii) $\mathrm{P}_1,\ \mathrm{P}_2$を通る直線の傾きの絶対値は$1$以下.
スポンサーリンク

「傾き」とは・・・

 まだこのタグの説明は執筆されていません。