タグ「不等号」の検索結果

50ページ目:全4604問中491問~500問を表示)
岡山理科大学 私立 岡山理科大学 2016年 第2問
$a$は定数とする.$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(a-1,\ (a-1)^2)$について,次の問いに答えよ.

(1)直線$\mathrm{AB}$と$y$軸との交点の座標を$a$で表せ.
(2)$\triangle \mathrm{OAB}$の面積を$a$の式で表せ.ただし,$a \neq 0,\ 1$とする.
(3)$0<a<1$のとき,$\triangle \mathrm{OAB}$の面積の最大値と,そのときの$a$の値を求めよ.
岡山理科大学 私立 岡山理科大学 2016年 第3問
関数
\[ f(x)=\log_4 (x-1)+\log_{\frac{1}{2}} (x+1) \]
について,次の問いに答えよ.

(1)$f(3)$の値を求めよ.
(2)関数$f(x)$において,変数$x$のとりうる値の範囲を求めよ.
(3)不等式$f(x) \leqq -2$を解け.
広島工業大学 私立 広島工業大学 2016年 第1問
次の問いに答えよ.

(1)$a,\ b$は実数とする.$3$次方程式$x^3+x^2+ax+b=0$が$1+i$を解にもつとき,$a,\ b$の値を求めよ.また他の解を求めよ.
(2)関数$y=\cos^2 \theta-4 \sin \theta+7$の最大値と最小値を求めよ.ただし,$0 \leqq \theta \leqq \pi$とする.
(3)初項$\displaystyle \frac{2}{3}$,公比$\displaystyle \frac{1}{3}$の等比数列$\{a_n\}$を考える.初項から第$n$項までの和$S_n$が$0.998$を超える最小の自然数$n$を求めよ.
広島工業大学 私立 広島工業大学 2016年 第4問
座標平面において,連立不等式$\left\{ \begin{array}{l}
y \geqq x^2-2x \\
y-x \leqq 0
\end{array} \right.$の表す領域を$D$とする.次の問いに答えよ.

(1)$D$を図示せよ.
(2)$D$の点$(x,\ y)$に対して$x+y=a$とする.$a$の最大値と最小値,およびそのときの$x,\ y$を求めよ.
(3)$D$の点$(x,\ y)$に対して$xy=b$とする.$b$の最大値と最小値,およびそのときの$x,\ y$を求めよ.
岡山理科大学 私立 岡山理科大学 2016年 第4問
$\triangle \mathrm{ABC}$において,内心を$\mathrm{I}$,外心を$\mathrm{O}$,内接円の半径を$r$,外接円の半径を$R$とするとき,次の問いに答えよ.

(1)$\angle \mathrm{BAC}=\alpha$とするとき,$\angle \mathrm{BIC}$を$\alpha$の式で表せ.
(2)直線$\mathrm{AI}$と$\triangle \mathrm{ABC}$の外接円との$\mathrm{A}$でない交点を$\mathrm{D}$とするとき,$3$点$\mathrm{B}$,$\mathrm{C}$,$\mathrm{I}$は$\mathrm{D}$を中心とする同一円周上にあることを証明せよ.
(3)$2$点$\mathrm{I}$,$\mathrm{O}$の距離を$d$とする.$\mathrm{AB}=\mathrm{AC}$のとき,等式$(R+d)(R-d)=2rR$および不等式$R \geqq 2r$を証明せよ.
(4)$\mathrm{AB} \neq \mathrm{AC}$のとき,不等式$R>2r$を証明せよ.
広島工業大学 私立 広島工業大学 2016年 第5問
次の各問いに答えよ.

(1)$x^2+xy+3x-2y^2+3y+2$を因数分解せよ.
(2)不等式$|x-1| \leqq 2x \leqq |x+1|$を解け.
(3)$x+y=1$のとき,$x^2+2y$の最小値とそのときの$x,\ y$の値を求めよ.
広島工業大学 私立 広島工業大学 2016年 第7問
次の問いに答えよ.

(1)原点を通る放物線$y=x^2+2ax+b$の頂点が直線$y=2x-3$上にあるとき,$a,\ b$の値を求めよ.ただし,$a>0$とする.
(2)$p$を負の定数とする.$(1)$で求めた$2$次関数の$p \leqq x \leqq 0$における最小値$m$とそのときの$x$を求めよ.
千葉工業大学 私立 千葉工業大学 2016年 第1問
次の各問に答えよ.

(1)$\displaystyle \frac{3-i}{3+i}=\frac{[ア]-[イ]i}{[ウ]}$(ただし,$i^2=-1$)である.
(2)$x$の$2$次方程式$x^2-2(k-4)x+2k=0$が重解をもつような定数$k$の値は小さい順に$[エ]$,$[オ]$である.
(3)$2$次関数$\displaystyle y=\frac{1}{3}x^2-6x+35$のグラフは,放物線$\displaystyle y=\frac{1}{3}x^2$を$x$軸方向に$[カ]$,$y$軸方向に$[キ]$だけ平行移動した放物線である.
(4)$10$個の値$1,\ 3,\ 8,\ 5,\ 8,\ [ク],\ 3,\ 7,\ 7,\ 1$からなるデータの平均値は$5$,最頻値は$[ケ]$,中央値は$[コ]$である.
(5)$x>0$において,$\displaystyle \left( x-\frac{1}{2} \right) \left( 2-\frac{9}{x} \right)$は$\displaystyle x=\frac{[サ]}{[シ]}$のとき,最小値$[スセ]$をとる.
(6)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$から異なる$3$個の数字を使ってできる$3$桁の整数は$[ソタ]$個あり,そのうち偶数のものは$[チツ]$個ある.
(7)$0 \leqq \theta<2\pi$とする.$\displaystyle \cos 3\theta=\frac{1}{2}$をみたす$\theta$のうち,最大のものは$\displaystyle \frac{[テト]}{[ナ]} \pi$である.
(8)$\displaystyle \int_{-2}^1 (x^3-3x+2) \, dx=\frac{[ニヌ]}{[ネ]}$である.
千葉工業大学 私立 千葉工業大学 2016年 第2問
次の各問に答えよ.

(1)実数$x,\ y$は$x \geqq \sqrt[3]{2}$,$y \geqq 32$,$x^6y=256$をみたしている.$F=(\log_{16}x)(\log_2 y)$は,$t=\log_2 x$とおくと
\[ F=\frac{[アイ]}{[ウ]}t^2+[エ]t \]
と表される.$t$の取り得る値の範囲は$\displaystyle \frac{[オ]}{[カ]} \leqq t \leqq \frac{[キ]}{[ク]}$であり,$F$の最大値は$\displaystyle \frac{[ケ]}{[コ]}$,最小値は$\displaystyle \frac{[サ]}{[シ]}$である.
(2)$x$の関数$f(x)=x(x^2+ax+b)$($a,\ b$は定数)がある.$xy$平面において,原点$\mathrm{O}$と点$\mathrm{A}(5,\ f(5))$を結ぶ線分$\mathrm{OA}$を$4:1$に内分する点を$\mathrm{B}$とする.$\mathrm{B}$の$x$座標は$[ス]$であり,$\mathrm{B}$が曲線$y=f(x)$上にあるとき,$a=[セソ]$である.さらに,$f(x)$が$x=[ス]$で極値をとるとき,$b=[タチ]$であり,$f(x)$の極大値は$[ツテ]$である.
千葉工業大学 私立 千葉工業大学 2016年 第4問
$x$の$2$次関数$f_1(x),\ f_2(x),\ \cdots,\ f_n(x),\ \cdots$を条件

$f_1(x)=x^2-5x,$

$\displaystyle f_{n+1}(x)=x^2 \int_0^2 \{ t{f_n}^\prime(t)-f_n(t) \} \, dt+x \int_0^2 f_n(t) \, dt \quad (n=1,\ 2,\ 3,\ \cdots)$

により定める.さらに,数列$\{a_n\}$,$\{b_n\} (n=1,\ 2,\ 3,\ \cdots)$を
\[ f_n(x)=a_nx^2+b_nx \]
により定める.このとき,次の問いに答えよ.

(1)${f_n}^\prime(x)=[ア]a_nx+b_n$であり,数列$\{a_n\}$,$\{b_n\}$は
\[ a_{n+1}=\frac{[イ]}{[ウ]}a_n,\quad b_{n+1}=\frac{[エ]}{[オ]}a_n+[カ]b_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたす.
(2)$\displaystyle a_n=\left( \frac{[キ]}{[ク]} \right)^{n-1} (n=1,\ 2,\ 3,\ \cdots)$であり,$\displaystyle c_n=\frac{b_n}{{[カ]}^{n-1}}$とおくと,$\displaystyle c_{n+1}-c_n=\left( \frac{[ケ]}{[コ]} \right)^n (n=1,\ 2,\ 3,\ \cdots)$が成り立つ.
(3)$\displaystyle f_n(x)=\left( \frac{[キ]}{[ク]} \right)^{n-1}x^2+\left\{ [サ] \cdot \left( \frac{[シ]}{[ス]} \right)^{n-1}-[セ] \cdot {[ソ]}^{n-1} \right\} x$
である.
(4)$x$の方程式$f_n(x)=0$の$x=0$とは異なる解を$x=p_n$とする.不等式$p_n>M$がすべての正の整数$n$に対して成り立つような定数$M$のうち,最大の整数は$M=[タチ]$であり,$[タチ]<p_n<[タチ]+1$となるような最小の$n$は$[ツ]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。