タグ「三角比」の検索結果

7ページ目:全1924問中61問~70問を表示)
宮崎大学 国立 宮崎大学 2016年 第2問
一辺の長さ$1$の正五角形$\mathrm{OABCD}$について,$\mathrm{OB}$と$\mathrm{DC}$は平行である.
\[ \overrightarrow{\mathrm{OA}}=\overrightarrow{a},\quad \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\quad \overrightarrow{\mathrm{OC}}=\overrightarrow{x},\quad \overrightarrow{\mathrm{OD}}=\overrightarrow{y},\quad \overrightarrow{\mathrm{DC}}=k \overrightarrow{b} \quad (k \text{は実数}) \]
とするとき,次の各問に答えよ.
(図は省略)

(1)$k$の値を求め,$\overrightarrow{x},\ \overrightarrow{y}$を,$\overrightarrow{a}$と$\overrightarrow{b}$を用いてそれぞれ表せ.
(2)$\overrightarrow{a}$と$\overrightarrow{b}$のなす角を$\theta$とするとき,$\cos \theta$の値を求めよ.
(3)$\overrightarrow{a}$と$\overrightarrow{x}$の内積を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2016年 第3問
$a,\ b$を実数とする.$0 \leqq x \leqq \pi$を定義域とする$2$つの関数


$\displaystyle f(x)=\left\{ \begin{array}{cl}
\displaystyle\frac{x \sin x}{1-\cos x} & (0<x \leqq \pi) \\
a & (x=0)
\end{array} \right.$

$\displaystyle g(x)=\left\{ \begin{array}{cl}
\displaystyle\frac{\sin x}{\sqrt{x}} & (0<x \leqq \pi) \\
b & (x=0)
\end{array} \right.$


を考える.$f(x),\ g(x)$はともに$x=0$で連続であるとする.

(1)$a,\ b$の値を求めよ.
(2)$xy$平面において,連立不等式
\[ \left\{ \begin{array}{l}
0 \leqq x \leqq \pi \\
0 \leqq y \leqq f(x)g(x)
\end{array} \right. \]
の表す領域$D$を考える.$D$を$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
熊本大学 国立 熊本大学 2016年 第1問
$\triangle \mathrm{ABC}$と,$\mathrm{A}$を通り$\mathrm{BC}$に平行な直線$\ell$を考える.$k$を正の数とし,直線$\ell$上に点$\mathrm{P}$を$\overrightarrow{\mathrm{AP}}=k \overrightarrow{\mathrm{BC}}$となるようにとる.また直線$\ell$上に点$\mathrm{Q}$を,線分$\mathrm{PB}$と線分$\mathrm{QC}$が$1$点で交わるようにとる.その交点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおき,また$m$を$\overrightarrow{\mathrm{AQ}}=m \overrightarrow{\mathrm{AP}}$により定める.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{AR}}$を$\overrightarrow{b},\ \overrightarrow{c},\ k,\ m$を用いて表せ.
(2)$|\overrightarrow{b|}=1$,$|\overrightarrow{c|}=2$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{3}{4}$,$m=-1$とする.$\overrightarrow{\mathrm{BR}}$と$\overrightarrow{\mathrm{CR}}$が直交するとき,$k$の値を求めよ.
防衛医科大学校 国立 防衛医科大学校 2016年 第1問
以下の問に答えよ.

(1)$\displaystyle a_n=\sum_{k=1}^n 12k(100)^{n-k} (n=1,\ 2,\ 3,\ \cdots)$で表される数列$\{a_n\}$がある.$a_{17}-a_6$の下$1$桁から$12$桁までの数の和はいくらか.
(2)関数
\[ f(x)=\left\{ \begin{array}{cl}
2x & \left( 0 \leqq x<\displaystyle\frac{1}{2} \right) \phantom{\displaystyle\frac{2}{1}} \\
-2x+2 & \left( \displaystyle\frac{1}{2} \leqq x \leqq 1 \right) \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \]
とする.このとき,$\displaystyle \int_0^1 |f(f(x))-\sin 2\pi x| \, dx$はいくらか.

(3)極限値$\displaystyle \lim_{x \to \infty} \left( \displaystyle\frac{2x-2}{2x-1}-\displaystyle\frac{2}{{(2x-1)}^2} \right)^{3x}$を求めよ.
和歌山大学 国立 和歌山大学 2016年 第5問
複素数平面上に原点$\mathrm{O}$と$3$点$\mathrm{A}(5)$,$\mathrm{B}(-10-5i)$,$\mathrm{C}(3+4i)$をとる.$\triangle \mathrm{OAB}$を,点$\mathrm{O}$が点$\mathrm{C}$に重なるように平行移動し,さらに点$\mathrm{C}$のまわりに$\theta$だけ回転した.このとき,点$\mathrm{A}$は点$\mathrm{A}^\prime(\alpha)$に,点$\mathrm{B}$は点$\mathrm{B}^\prime(\beta)$に移った.ただし,$\displaystyle -\frac{\pi}{2}<\theta \leqq \frac{\pi}{2}$とし,$\alpha,\ \beta$は複素数とする.$3$点$\mathrm{O}$,$\mathrm{C}$,$\mathrm{A}^\prime$が一直線上にあるとき,次の問いに答えよ.

(1)$\alpha,\ \sin \theta$の値を求めよ.
(2)$\beta$の値を求めよ.
(3)$\angle \mathrm{B}^\prime \mathrm{OA}^\prime$の大きさを求めよ.
宮崎大学 国立 宮崎大学 2016年 第1問
次の各問に答えよ.ただし,$\log x$は$x$の自然対数を表す.

(1)次の関数を微分せよ.

(i) $\displaystyle y=\frac{x}{1+e^{\frac{1}{x}}}$

(ii) $\displaystyle y=\log \sqrt{\frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}-x}}$


(2)次の定積分の値を求めよ.


(i) $\displaystyle \int_0^2 |e^x-2| \, dx$

(ii) $\displaystyle \int_0^{\frac{\pi}{3}} x \sin^2 (2x) \, dx$

(iii) $\displaystyle \int_1^e \frac{\sqrt{1+\log x}}{x} \, dx$

\mon[$\tokeishi$] $\displaystyle \int_2^4 \frac{2x^3+x^2-2x+2}{x^4+x^2-2} \, dx$
宮崎大学 国立 宮崎大学 2016年 第1問
次の各問に答えよ.ただし,$\log x$は$x$の自然対数を表す.

(1)次の関数を微分せよ.

(i) $\displaystyle y=\frac{x}{1+e^{\frac{1}{x}}}$

(ii) $\displaystyle y=\log \sqrt{\frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}-x}}$


(2)次の定積分の値を求めよ.


(i) $\displaystyle \int_0^2 |e^x-2| \, dx$

(ii) $\displaystyle \int_0^{\frac{\pi}{3}} x \sin^2 (2x) \, dx$

(iii) $\displaystyle \int_1^e \frac{\sqrt{1+\log x}}{x} \, dx$

\mon[$\tokeishi$] $\displaystyle \int_2^4 \frac{2x^3+x^2-2x+2}{x^4+x^2-2} \, dx$
鹿児島大学 国立 鹿児島大学 2016年 第3問
関数$\displaystyle f(x)=\cos x-1+\frac{x^2}{2}$について,次の各問いに答えよ.

(1)導関数$f^\prime(x)$および$2$次導関数$f^{\prime\prime}(x)$をそれぞれ求めよ.
(2)$x \geqq 0$において$f^\prime(x) \geqq 0$および$f(x) \geqq 0$が成り立つことを示せ.
(3)$f(x)$の定積分を利用して$\displaystyle \sin 1 \geqq \frac{5}{6}$を示せ.
香川大学 国立 香川大学 2016年 第3問
平行四辺形$\mathrm{ABCD}$は,$\mathrm{AB}=2$,$\mathrm{AD}=3$,$\displaystyle \cos \angle \mathrm{BAD}=\frac{1}{3}$を満たしているとする.直線$\mathrm{BC}$上に$\mathrm{BC} \perp \mathrm{AP}$となる点$\mathrm{P}$をとり,直線$\mathrm{BD}$上に$\mathrm{BD} \perp \mathrm{AQ}$となる点$\mathrm{Q}$をとる.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{b}$とおくとき,次の問に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{AQ}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(3)$|\overrightarrow{\mathrm{AP|}}$と$|\overrightarrow{\mathrm{AQ|}}$を求めよ.
(4)$|\overrightarrow{\mathrm{PQ|}}$を求めよ.
香川大学 国立 香川大学 2016年 第3問
平行四辺形$\mathrm{ABCD}$は,$\mathrm{AB}=2$,$\mathrm{AD}=3$,$\displaystyle \cos \angle \mathrm{BAD}=\frac{1}{3}$を満たしているとする.直線$\mathrm{BC}$上に$\mathrm{BC} \perp \mathrm{AP}$となる点$\mathrm{P}$をとり,直線$\mathrm{BD}$上に$\mathrm{BD} \perp \mathrm{AQ}$となる点$\mathrm{Q}$をとる.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{b}$とおくとき,次の問に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{AQ}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(3)$|\overrightarrow{\mathrm{AP|}}$と$|\overrightarrow{\mathrm{AQ|}}$を求めよ.
(4)$|\overrightarrow{\mathrm{PQ|}}$を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。