タグ「ツテ」の検索結果

1ページ目:全29問中1問~10問を表示)
東邦大学 私立 東邦大学 2016年 第10問
$a$を定数とし,整式$(a+1)x^2+10xy-3y^2-2ax-12y+a$が異なる$2$つの$1$次式の積に因数分解できるとする.ただし,$2$つの$1$次式の係数は整数とする.このとき,$a$の値は$[ツテ]$である.
獨協医科大学 私立 獨協医科大学 2016年 第3問
三角形$\mathrm{ABC}$について,$\mathrm{AB}=5$,$\mathrm{BC}=7$,$\mathrm{CA}=8$とする.このとき
\[ \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[アイ] \]
である.$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.このとき
\[ \overrightarrow{\mathrm{AD}}=\frac{[ウ]}{[エオ]} \overrightarrow{\mathrm{AB}}+\frac{[カ]}{[キク]} \overrightarrow{\mathrm{AC}} \]
である.

また,三角形$\mathrm{ABC}$の内接円の中心を$\mathrm{I}$,外接円の中心を$\mathrm{O}$とすると


$\displaystyle \overrightarrow{\mathrm{AI}}=\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{AB}}+\frac{[サ]}{[シ]} \overrightarrow{\mathrm{AC}}$

$\displaystyle \overrightarrow{\mathrm{AO}}=\frac{[ス]}{[セソ]} \overrightarrow{\mathrm{AB}}+\frac{[タチ]}{[ツテ]} \overrightarrow{\mathrm{AC}}$


である.
したがって
\[ |\overrightarrow{\mathrm{OI|}}^2=\frac{[ト]}{[ナ]} \]
である.
三角形$\mathrm{ABC}$の外接円の周上を動く点$\mathrm{P}$と内接円の周上を動く点$\mathrm{Q}$があるとき,線分$\mathrm{PQ}$の長さの最大値は
\[ \frac{[ニヌ]+\sqrt{[ネ]}}{\sqrt{[ノ]}} \]
である.
千葉工業大学 私立 千葉工業大学 2016年 第2問
次の各問に答えよ.

(1)実数$x,\ y$は$x \geqq \sqrt[3]{2}$,$y \geqq 32$,$x^6y=256$をみたしている.$F=(\log_{16}x)(\log_2 y)$は,$t=\log_2 x$とおくと
\[ F=\frac{[アイ]}{[ウ]}t^2+[エ]t \]
と表される.$t$の取り得る値の範囲は$\displaystyle \frac{[オ]}{[カ]} \leqq t \leqq \frac{[キ]}{[ク]}$であり,$F$の最大値は$\displaystyle \frac{[ケ]}{[コ]}$,最小値は$\displaystyle \frac{[サ]}{[シ]}$である.
(2)$x$の関数$f(x)=x(x^2+ax+b)$($a,\ b$は定数)がある.$xy$平面において,原点$\mathrm{O}$と点$\mathrm{A}(5,\ f(5))$を結ぶ線分$\mathrm{OA}$を$4:1$に内分する点を$\mathrm{B}$とする.$\mathrm{B}$の$x$座標は$[ス]$であり,$\mathrm{B}$が曲線$y=f(x)$上にあるとき,$a=[セソ]$である.さらに,$f(x)$が$x=[ス]$で極値をとるとき,$b=[タチ]$であり,$f(x)$の極大値は$[ツテ]$である.
近畿大学 私立 近畿大学 2016年 第2問
等式
\[ f^\prime(x)=x^2+2 \left( \int_0^1 f(t) \, dt \right) x \]
を満たす関数$y=f(x)$を考える.$\displaystyle c=\int_0^1 f(t) \, dt$とおく.

(1)$\displaystyle f(x)=\frac{1}{3}x^3+cx^2+\left( \frac{[ア]}{[イ]}c-\frac{[ウ]}{[エオ]} \right)$であり,

$f(0)=1$のとき,$\displaystyle c=\frac{[カキ]}{[ク]}$である.

(2)$c<0$とし,$f(x)$は$0 \leqq x \leqq 1$において$x=1$で最大値をとるものとする.このとき,$c$のとりうる最小の値は
\[ \frac{[ケコ]}{[サ]} \]
であり,$f(x)$の$0 \leqq x \leqq 1$における最小値は$c$を用いて
\[ \frac{[シ]}{[ス]} c^{\mkakko{セ}}+\frac{[ソ]}{[タ]}c-\frac{[チ]}{[ツテ]} \]
と表すことができる.
(3)座標平面において,関数$y=f(x)$のグラフと直線
\[ y=-\frac{3}{4}c^2x-\frac{1}{12} \]
が点$(-1,\ f(-1))$で接するとき,$c=[ト]$である.このとき,$2$つのグラフのもう$1$つの共有点の$x$座標は$[ナニ]$である.
近畿大学 私立 近畿大学 2016年 第2問
等式
\[ f^\prime(x)=x^2+2 \left( \int_0^1 f(t) \, dt \right) x \]
を満たす関数$y=f(x)$を考える.$\displaystyle c=\int_0^1 f(t) \, dt$とおく.

(1)$\displaystyle f(x)=\frac{1}{3}x^3+cx^2+\left( \frac{[ア]}{[イ]}c-\frac{[ウ]}{[エオ]} \right)$であり,

$f(0)=1$のとき,$\displaystyle c=\frac{[カキ]}{[ク]}$である.

(2)$c<0$とし,$f(x)$は$0 \leqq x \leqq 1$において$x=1$で最大値をとるものとする.このとき,$c$のとりうる最小の値は
\[ \frac{[ケコ]}{[サ]} \]
であり,$f(x)$の$0 \leqq x \leqq 1$における最小値は$c$を用いて
\[ \frac{[シ]}{[ス]} c^{\mkakko{セ}}+\frac{[ソ]}{[タ]}c-\frac{[チ]}{[ツテ]} \]
と表すことができる.
(3)座標平面において,関数$y=f(x)$のグラフと直線
\[ y=-\frac{3}{4}c^2x-\frac{1}{12} \]
が点$(-1,\ f(-1))$で接するとき,$c=[ト]$である.このとき,$2$つのグラフのもう$1$つの共有点の$x$座標は$[ナニ]$である.
金沢工業大学 私立 金沢工業大学 2015年 第6問
関数$y=3 \cdot 4^x-3 \cdot 2^{x+1}+8 (0 \leqq x \leqq 2)$について,$2^x=t$とする.

(1)$t$のとりうる値の範囲は$[サ] \leqq t \leqq [シ]$である.
(2)$y=[ス]t^2-[セ]t+[ソ] ([サ] \leqq t \leqq [シ])$である.
(3)$y$は$t=[タ]$のとき,すなわち,$x=[チ]$のとき,最大値$[ツテ]$をとり,$t=[ト]$のとき,すなわち,$x=[ナ]$のとき,最小値$[ニ]$をとる.
西南学院大学 私立 西南学院大学 2015年 第3問
以下の問に答えよ.

(1)直線$\displaystyle y=\frac{1}{2}x$を原点のまわりに正の向きに$\displaystyle \frac{\pi}{4}$だけ回転した直線の方程式は$y=[チ]x$である.
(2)$2$点$\mathrm{A}(-1,\ 5)$,$\mathrm{B}(3,\ 2)$に対して,直線$y=mx-2m-1$が線分$\mathrm{AB}$(両端を含む)と共有点をもつような定数$m$の範囲は,$m \leqq [ツテ]$,$m \geqq [ト]$である.
(3)$2$点$\mathrm{C}(2,\ 1)$,$\mathrm{D}(5,\ 4)$に対して,$\mathrm{CP}:\mathrm{DP}=1:2$となるような点$\mathrm{P}(x,\ y)$の軌跡の方程式は,$\displaystyle \left( x-[ナ] \right)^2+\left( y-[ニ] \right)^2=[ヌ]$である.
東北医科薬科大学 私立 東北医科薬科大学 2015年 第1問
三角形$\mathrm{OAB}$は$\mathrm{OA}=6$,$\mathrm{OB}=2 \sqrt{5}$,$\mathrm{AB}=2 \sqrt{2}$である.点$\mathrm{P}$は辺$\mathrm{AB}$を$k:(1-k)$に,点$\mathrm{Q}$は辺$\mathrm{OB}$を$(1-k^2):k^2$に内分する点である.ただし$0<k<1$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.このとき,次の問に答えなさい.

(1)$\overrightarrow{\mathrm{OP}}=([ア]-[イ]) \overrightarrow{a}+[ウ] \overrightarrow{b}$である.
(2)ベクトル$\overrightarrow{a},\ \overrightarrow{b}$の内積は$\overrightarrow{a} \cdot \overrightarrow{b}=[エオ]$である.
(3)点$\mathrm{B}$から直線$\mathrm{OA}$に下ろした垂線を$\mathrm{BR}$とおくと$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[カ]}{[キ]} \overrightarrow{a}$である.
(4)$\displaystyle \overrightarrow{\mathrm{RQ}}=-\frac{[ク]}{[ケ]} \overrightarrow{a}+([コ]-{[サ]}^{\mkakko{シ}}) \overrightarrow{b}$である.
(5)ベクトル$\overrightarrow{\mathrm{RP}}$と$\overrightarrow{\mathrm{RQ}}$の内積は
\[ \overrightarrow{\mathrm{RP}} \cdot \overrightarrow{\mathrm{RQ}}=[ス]k^3-[セ]k^2+[ソ]k \]
である.この値は$\displaystyle k=\frac{[タ]}{[チ]}$で最大値$\displaystyle \frac{[ツテ]}{[トナ]}$をとる.
獨協医科大学 私立 獨協医科大学 2015年 第2問
正$n$角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \cdots \mathrm{P}_n$($n$は$4$以上の整数)を$K$とする.$K$の頂点と各辺の中点の合計$2n$個の点から異なる$3$点を選び,それらを線分で結んでできる図形を$T$とする.(ただし,$K$の$1$つの頂点とそれに隣接する中点の一方を結ぶ線分を$1$辺とする三角形,例えば辺$\mathrm{P}_1 \mathrm{P}_2$の中点を$\mathrm{M}_1$として,三角形$\mathrm{P}_1 \mathrm{M}_1 \mathrm{P}_3$なども「$K$と辺を共有する三角形」とする.)

(1)$n=5$とする.
$T$が三角形となる確率は$\displaystyle \frac{[アイ]}{[ウエ]}$である.
$T$が二等辺三角形となる確率は$\displaystyle \frac{[オ]}{[カキ]}$である.
$T$が$K$と辺を共有しない三角形となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(2)$T$が三角形となる確率は
\[ \frac{[コ]n^2-[サ]n-[シ]}{[ス]([セ]n-[ソ])(n-[タ])} \]
である.
$T$が$K$と辺を共有しない三角形となる確率は
\[ \frac{[チ]n^2-[ツテ]n+[トナ]}{([セ]n-[ソ])(n-[タ])} \]
である.
九州産業大学 私立 九州産業大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{1+\sqrt{13}}{2}$とするとき,$x^2-x=[ア]$,$x^3-4x+10=[イウ]$である.
(2)不等式$x^2+2x \leqq -x \leqq -x^2-2x+2$の解は$[エオ] \leqq x \leqq [カ]$である.
(3)$m$を定数とする.放物線$C:y=x^2-2mx+9$について,

(i) 放物線$C$が$x$軸に接するとき,$m=\pm [キ]$である.
(ii) 放物線$C$が$x$軸と異なる$2$点で交わり,$x$軸から切り取る線分の長さが$8$であるとき,$m=\pm [ク]$である.
(iii) 放物線$C$が$x$軸の負の部分と異なる$2$点で交わるような定数$m$の値の範囲は$m<[ケコ]$である.

(4)$5$人が$1$回じゃんけんを行うとき,

(i) $1$人が勝ち,$4$人が負ける確率は$\displaystyle \frac{[サ]}{[シス]}$である.

(ii) $2$人が勝ち,$3$人が負ける確率は$\displaystyle \frac{[セソ]}{[タチ]}$である.

(iii) 誰も勝たない,すなわち,あいこになる確率は$\displaystyle \frac{[ツテ]}{[トナ]}$である.
スポンサーリンク

「ツテ」とは・・・

 まだこのタグの説明は執筆されていません。