タグ「セソ」の検索結果

1ページ目:全50問中1問~10問を表示)
北海道薬科大学 私立 北海道薬科大学 2016年 第4問
関数$\displaystyle f(x)=\left( \log_4 \frac{x^2}{4} \right)^4-\log_2 \frac{x^4}{32} (1 \leqq x \leqq 16)$について,次の設問に答えよ.

(1)$\log_2 x$の最大値は$[ア]$,最小値は$[イ]$である.
(2)$f(x)$は
\[ f(x)=\left( \log_2 x+[ウエ] \right)^{\mkakko{オ}}+[カキ] \log_2 x+[ク] \]
と表すことができる.
(3)$f(x)$は

$x=[ケコ]$のとき,最大値$[サシ]$
$x=[ス]$のとき,最小値$[セソ]$

をとる.
獨協医科大学 私立 獨協医科大学 2016年 第3問
三角形$\mathrm{ABC}$について,$\mathrm{AB}=5$,$\mathrm{BC}=7$,$\mathrm{CA}=8$とする.このとき
\[ \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[アイ] \]
である.$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.このとき
\[ \overrightarrow{\mathrm{AD}}=\frac{[ウ]}{[エオ]} \overrightarrow{\mathrm{AB}}+\frac{[カ]}{[キク]} \overrightarrow{\mathrm{AC}} \]
である.

また,三角形$\mathrm{ABC}$の内接円の中心を$\mathrm{I}$,外接円の中心を$\mathrm{O}$とすると


$\displaystyle \overrightarrow{\mathrm{AI}}=\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{AB}}+\frac{[サ]}{[シ]} \overrightarrow{\mathrm{AC}}$

$\displaystyle \overrightarrow{\mathrm{AO}}=\frac{[ス]}{[セソ]} \overrightarrow{\mathrm{AB}}+\frac{[タチ]}{[ツテ]} \overrightarrow{\mathrm{AC}}$


である.
したがって
\[ |\overrightarrow{\mathrm{OI|}}^2=\frac{[ト]}{[ナ]} \]
である.
三角形$\mathrm{ABC}$の外接円の周上を動く点$\mathrm{P}$と内接円の周上を動く点$\mathrm{Q}$があるとき,線分$\mathrm{PQ}$の長さの最大値は
\[ \frac{[ニヌ]+\sqrt{[ネ]}}{\sqrt{[ノ]}} \]
である.
千葉工業大学 私立 千葉工業大学 2016年 第2問
次の各問に答えよ.

(1)実数$x,\ y$は$x \geqq \sqrt[3]{2}$,$y \geqq 32$,$x^6y=256$をみたしている.$F=(\log_{16}x)(\log_2 y)$は,$t=\log_2 x$とおくと
\[ F=\frac{[アイ]}{[ウ]}t^2+[エ]t \]
と表される.$t$の取り得る値の範囲は$\displaystyle \frac{[オ]}{[カ]} \leqq t \leqq \frac{[キ]}{[ク]}$であり,$F$の最大値は$\displaystyle \frac{[ケ]}{[コ]}$,最小値は$\displaystyle \frac{[サ]}{[シ]}$である.
(2)$x$の関数$f(x)=x(x^2+ax+b)$($a,\ b$は定数)がある.$xy$平面において,原点$\mathrm{O}$と点$\mathrm{A}(5,\ f(5))$を結ぶ線分$\mathrm{OA}$を$4:1$に内分する点を$\mathrm{B}$とする.$\mathrm{B}$の$x$座標は$[ス]$であり,$\mathrm{B}$が曲線$y=f(x)$上にあるとき,$a=[セソ]$である.さらに,$f(x)$が$x=[ス]$で極値をとるとき,$b=[タチ]$であり,$f(x)$の極大値は$[ツテ]$である.
東洋大学 私立 東洋大学 2016年 第1問
次の各問に答えよ.

(1)整式$(a+b-7)^3-(a-b+7)^3$を因数分解すると,
\[ 2(b-[ア])([イ]a^2+b^2-[ウエ]b+[オカ]) \]
となる.
(2)$\log_2 x+\log_2 y=4$のとき,$x^2+y^2$の最小値は$[キク]$で,そのときの$x,\ y$の値は$x=[ケ]$,$y=[コ]$である.
(3)各辺の長さが$\mathrm{AB}=10$,$\mathrm{BC}=8$,$\mathrm{CA}=6$である$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$,$\angle \mathrm{A}$の外角の$2$等分線と辺$\mathrm{BC}$の延長との交点を$\mathrm{E}$とする.このとき,線分$\mathrm{DE}$の長さは$[サシ]$である.
(4)$k$を定数とするとき,方程式$x^3+3x^2-9x-k=0$が異なる$3$個の実数解をもつための必要十分条件は$-[ス]<k<[セソ]$である.
近畿大学 私立 近畿大学 2016年 第1問
$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$を$1:3$に内分する点を$\mathrm{E}$とする.四角形$\mathrm{DBCE}$は円$\mathrm{O}$に内接しており,$\mathrm{BC}=6$,$\mathrm{AD}=\mathrm{DE}$とする.

(1)$\mathrm{AD}=\sqrt{[ア]}$,$\displaystyle \mathrm{AE}=\frac{[イ]}{[ウ]}$である.

(2)$\displaystyle \cos \angle \mathrm{ABC}=\frac{\sqrt{[エ]}}{[オ]}$であり,$\mathrm{DC}=\sqrt{[カキ]}$である.

(3)円$\mathrm{O}$の半径は$\displaystyle \frac{[ク] \sqrt{[ケコサ]}}{[シス]}$である.

(4)$\triangle \mathrm{ABC}$の内接円の半径は
\[ \frac{[セソ] \sqrt{[タチ]}-[ツ] \sqrt{[テト]}}{[ナニ]} \]
である.
近畿大学 私立 近畿大学 2016年 第1問
$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$を$1:3$に内分する点を$\mathrm{E}$とする.四角形$\mathrm{DBCE}$は円$\mathrm{O}$に内接しており,$\mathrm{BC}=6$,$\mathrm{AD}=\mathrm{DE}$とする.

(1)$\mathrm{AD}=\sqrt{[ア]}$,$\displaystyle \mathrm{AE}=\frac{[イ]}{[ウ]}$である.

(2)$\displaystyle \cos \angle \mathrm{ABC}=\frac{\sqrt{[エ]}}{[オ]}$であり,$\mathrm{DC}=\sqrt{[カキ]}$である.

(3)円$\mathrm{O}$の半径は$\displaystyle \frac{[ク] \sqrt{[ケコサ]}}{[シス]}$である.

(4)$\triangle \mathrm{ABC}$の内接円の半径は
\[ \frac{[セソ] \sqrt{[タチ]}-[ツ] \sqrt{[テト]}}{[ナニ]} \]
である.
西南学院大学 私立 西南学院大学 2015年 第2問
$3$次関数$f(x)=-4x^3+15x^2+18x+a$は,$\displaystyle x=\frac{[ケコ]}{[サ]}$で極小値,$x=[シ]$で極大値をとる.

また,方程式$f(x)=0$の異なる$3$つの実数解のうち$2$つが負となるような定数$a$の範囲は,$\displaystyle [ス]<a<\frac{[セソ]}{[タ]}$である.
東北医科薬科大学 私立 東北医科薬科大学 2015年 第2問
$x^2-12x+y^2-24y+160=0$で表される円を$C$とおく.このとき,次の問に答えなさい.

(1)円$C$の中心$\mathrm{P}$は$([ア],\ [イウ])$で半径は$[エ] \sqrt{[オ]}$である.
(2)原点$\mathrm{O}(0,\ 0)$と中心$\mathrm{P}$を通る直線$\ell$を考える.直線$\ell$と円$C$の交点を原点に近い方から$\mathrm{Q}$,$\mathrm{R}$とおくと点$\mathrm{Q}$の$x$座標は$[カ]$,点$\mathrm{R}$の$x$座標は$[キ]$である($[カ]<[キ]$).
(3)直線$\ell$に平行で$y$切片が$k$の直線を$\ell(k)$とおく.ただし$0<k$とする.直線$\ell(k)$と円$C$が異なる$2$交点$\mathrm{S}$,$\mathrm{T}$をもつような$k$の値の範囲は$0<k<[クケ]$である.この$2$交点の$x$座標を$\alpha,\ \beta$とおくと$\displaystyle \alpha+\beta=[コサ]-\frac{[シ]}{[ス]}k$である.
(4)このとき$\displaystyle \mathrm{ST}^2=[セソ]-\frac{[タ]}{[チ]}k^2$である.$\mathrm{ST}$の中点を$\mathrm{U}$とおくと$\displaystyle \mathrm{PU}^2=\frac{[ツ]}{[テ]}k^2$なので三角形$\mathrm{PST}$の面積は$k=[ト] \sqrt{[ナ]}$のとき最大値$[ニヌ]$をとる.
金沢工業大学 私立 金沢工業大学 2015年 第6問
\begin{mawarikomi}{55mm}{
(図は省略)
}
座標平面において媒介変数表示された曲線
\[ x=\sin t,\quad y=\sin 2t \quad (0 \leqq t \leqq \pi) \]
を考え,この曲線で囲まれた図形を$D$とする.右図はこの曲線の概形を表す.

(1)この曲線上の点$(x,\ y)$の$y$座標が最大になるのは$\displaystyle t=\frac{\pi}{[ア]}$のときで,その点の直交座標は$\displaystyle \left( \frac{\sqrt{[イ]}}{[ウ]},\ [エ] \right)$であり,$y$座標が最小になるのは$\displaystyle t=\frac{[オ]}{[カ]} \pi$のときで,その点の直交座標は$\displaystyle \left( \frac{\sqrt{[キ]}}{[ク]},\ [ケコ] \right)$である.また,この曲線が原点以外の点で$x$軸と交わるのは$\displaystyle t=\frac{\pi}{[サ]}$のときで,その交点の$x$座標は$[シ]$である.

(2)$\displaystyle \lim_{t \to +0} \frac{dy}{dx}=[ス]$であり,$\displaystyle \lim_{t \to \pi-0} \frac{dy}{dx}=[セソ]$である.

(3)図形$D$の面積は$\displaystyle \frac{[タ]}{[チ]}$である.
(4)図形$D$を$x$軸のまわりに$1$回転させてできる立体の体積は$\displaystyle \frac{[ツ]}{[テト]} \pi$である.

\end{mawarikomi}
東洋大学 私立 東洋大学 2015年 第1問
次の各問に答えよ.

(1)$2$次方程式$3x^2+x+a=0$($a$は定数)の解が$\sin \theta,\ \cos \theta$のとき,
\[ \sin^3 \theta+\cos^3 \theta=-\frac{[アイ]}{[ウエ]} \]
である.
(2)$2^x=3$,$3^y=5$,$xyz=3$のとき,$5^z=[オ]$である.
(3)関数$f(x)=(x-2)(x-1)(x+1)(x+2)$は,$0 \leqq x \leqq 2$の範囲において,$x=[カ]$で最大値$[キ]$をとり,$\displaystyle x=\sqrt{\frac{[ク]}{[ケ]}}$で最小値$\displaystyle -\frac{[コ]}{[サ]}$をとる.
(4)直線$y=mx+4$($m$は正の定数)が円$x^2+y^2=36$によって切りとられる弦の長さが$4 \sqrt{6}$のとき,$\displaystyle m=\frac{\sqrt{[シ]}}{[ス]}$である.
(5)$x^6$を$x^2-x-3$で割ったときの余りは$[セソ]x+[タチ]$である.
スポンサーリンク

「セソ」とは・・・

 まだこのタグの説明は執筆されていません。