タグ「スセ」の検索結果

1ページ目:全34問中1問~10問を表示)
埼玉工業大学 私立 埼玉工業大学 2016年 第2問
$k,\ a,\ b,\ c$を実数とする.$x$の$4$次式$x^4-4x^3+5x^2+kx-8$を因数分解すると
\[ (x^2+ax+4)(x^2+bx+c) \]
となる.このとき,

(1)$c=[ケコ]$である.
(2)$a<b$ならば,$a=[サシ]$,$b=[スセ]$であり,このとき$k=[ソ]$となる.
$a \geqq b$ならば,$a=[スセ]$,$b=[サシ]$であり,このとき$k=[タチツ]$となる.
(3)$(x^2+ax+4)(x^2+bx+c)=0$を満たす正の実数$x$は,$a<b$のときは,$[テ]$であり,$a \geqq b$のときは,
\[ \frac{[ト]+\sqrt{[ナニ]}}{[ヌ]} \]
である.
獨協医科大学 私立 獨協医科大学 2016年 第1問
次の問いに答えなさい.

(1)$m$を実数の定数とする.$x$についての$2$つの$2$次不等式

$x^2-4x+3<0 \qquad\hspace{2.65mm} \cdots\cdots \ ①$
$x^2-2mx-8m^2<0 \cdots\cdots \ ②$

を考える.$①$の解は
\[ [ア]<x<[イ] \]
である.
$①$を満たすすべての実数が$②$を満たすような$m$の値の範囲は
\[ m \leqq \frac{[ウエ]}{[オ]}, \frac{[カ]}{[キ]} \leqq m \]
である.
また,$①,\ ②$をともに満たす実数$x$が存在しないような$m$の値の範囲は
\[ \frac{[クケ]}{[コ]} \leqq m \leqq \frac{[サ]}{[シ]} \]
である.
(2)$4$進法で表された$123_{(4)}$を$10$進法で表すと,$[スセ]$である.
整数$n$を$4$進法で表したとき,$3$桁になった.このとき,$n$のとり得る値の範囲を$10$進法で表すと
\[ [ソタ] \leqq n \leqq [チツ] \]
である.
$10$進法で表された$3^{20}$を$4$進法で表すと,その桁数は$[テト]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
金沢工業大学 私立 金沢工業大学 2016年 第1問
次の問いに答えよ.

(1)$2$次方程式$x^2+3x+1=0$の$1$つの解$x$について,
\[ x+\frac{1}{x}=[アイ],\quad x^2+\frac{1}{x^2}=[ウ],\quad x^4+\frac{1}{x^4}=[エオ] \]
である.
(2)不等式$|x-3|<a$を満たす整数$x$がちょうど$5$個であるような定数$a$の範囲は$[カ]<a \leqq [キ]$である.
(3)$a,\ b$を整数とする.$a$を$13$で割ると$10$余り,$b$を$13$で割ると$7$余るとき,$a+b$,$ab$を$13$で割ると余りはそれぞれ$[ク]$,$[ケ]$である.また,$a^2b+ab^2-a-b$を$13$で割ると余りは$[コ]$である.
(4)男性$3$人と女性$3$人の$6$人を$2$人ずつ$3$組に分ける方法は$[サシ]$通りあり,そのうち各組が男女のペアになる分け方は$[ス]$通りある.
(5)$\displaystyle \tan \theta=\frac{2}{\sqrt{5}} \left( \pi<\theta <\frac{3}{2} \pi \right)$のとき,
\[ \frac{\cos \theta}{1+\cos \theta}+\frac{\sin \theta}{1+\sin \theta}=-\frac{[アイ]+[ウ] \sqrt{[エ]}}{[オ]} \]
である.
(6)関数$y=f(x)$のグラフを$x$軸方向に$-2$だけ,$y$軸方向に$5$だけ平行移動したグラフは,関数$y=3^x$のグラフと直線$y=x$に関して対称である.このとき,もとの関数は$y=\log_{\mkakko{カ}}(x-[キ])-[ク]$である.
(7)実数$x,\ y$が$2$つの不等式$x^2+y \leqq 4$,$y \geqq 0$を満たすとき,$6x+3y$は$x=[ケ]$,$y=[コ]$のとき最大値$[サシ]$をとり,$x=[スセ]$,$y=[ソ]$のとき最小値$[タチツ]$をとる.
(8)正四面体の面にそれぞれ$1$から$4$の数字のついたさいころを$5$回投げるとき,$4$回以上数字$1$のついた面が下になる確率は$\displaystyle \frac{[テ]}{[トナ]}$である.
千葉工業大学 私立 千葉工業大学 2016年 第1問
次の各問に答えよ.

(1)$\displaystyle \frac{3-i}{3+i}=\frac{[ア]-[イ]i}{[ウ]}$(ただし,$i^2=-1$)である.
(2)$x$の$2$次方程式$x^2-2(k-4)x+2k=0$が重解をもつような定数$k$の値は小さい順に$[エ]$,$[オ]$である.
(3)$2$次関数$\displaystyle y=\frac{1}{3}x^2-6x+35$のグラフは,放物線$\displaystyle y=\frac{1}{3}x^2$を$x$軸方向に$[カ]$,$y$軸方向に$[キ]$だけ平行移動した放物線である.
(4)$10$個の値$1,\ 3,\ 8,\ 5,\ 8,\ [ク],\ 3,\ 7,\ 7,\ 1$からなるデータの平均値は$5$,最頻値は$[ケ]$,中央値は$[コ]$である.
(5)$x>0$において,$\displaystyle \left( x-\frac{1}{2} \right) \left( 2-\frac{9}{x} \right)$は$\displaystyle x=\frac{[サ]}{[シ]}$のとき,最小値$[スセ]$をとる.
(6)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$から異なる$3$個の数字を使ってできる$3$桁の整数は$[ソタ]$個あり,そのうち偶数のものは$[チツ]$個ある.
(7)$0 \leqq \theta<2\pi$とする.$\displaystyle \cos 3\theta=\frac{1}{2}$をみたす$\theta$のうち,最大のものは$\displaystyle \frac{[テト]}{[ナ]} \pi$である.
(8)$\displaystyle \int_{-2}^1 (x^3-3x+2) \, dx=\frac{[ニヌ]}{[ネ]}$である.
玉川大学 私立 玉川大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$\displaystyle \int_0^2 |x^2-3x+2| \, dx=[ア]$.

(2)$\displaystyle \left( x^2-\frac{1}{2x} \right)^5$の$x$の項の係数は$\displaystyle \frac{[イウ]}{[エ]}$で,$x^7$の項の係数は$\displaystyle \frac{[オカ]}{[キ]}$である.

(3)$\displaystyle \frac{x^2+2x+2}{(x-1)(x^2-x+1)}=\frac{A}{x-1}+\frac{Bx+C}{x^2-x+1}$は$x$について恒等式である.このとき,$A$,$B$,$C$は,
\[ A=[ク],\quad B=[ケコ],\quad C=[サ] \]
である.
(4)方程式$x(x+1)(x+2)=60$の解は,$x=[シ],\ [スセ] \pm \sqrt{[ソタ]}i$である.
(5)$\displaystyle -1,\ \frac{3}{2},\ -1+i,\ -1-i$が$4$次方程式$x^4+ax^3+bx^2+cx+d=0$の解であるとき,
\[ a=\frac{[チ]}{[ツ]},\quad b=\frac{[テト]}{[ナ]},\quad c=[ニヌ],\quad d=[ネノ] \]
である.
(6)関数$y=4^x-2^{x+1}+3 (-1 \leqq x \leqq 2)$は,$x=[ハ]$のとき,最大値$[ヒフ]$をとり,$x=[ヘ]$のとき,最小値$[ホ]$をとる.
(7)$f^\prime(a)$が存在するとき,


$\displaystyle \lim_{h \to 0} \frac{f(a+h)-f(a-h)}{h}=[マ]f^\prime(a),$

$\displaystyle \lim_{h \to 0} \frac{f(a+3h)-f(a+h)}{h}=[ミ]f^\prime(a)$


が成り立つ.
金沢工業大学 私立 金沢工業大学 2016年 第3問
$\mathrm{O}$を原点とする座標平面において,点$\mathrm{A}$,$\mathrm{B}$をそれぞれ$\overrightarrow{\mathrm{OA}}=(1,\ 0)$,$\overrightarrow{\mathrm{OB}}=(1,\ 2)$で定め,点$\mathrm{P}$を$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$($s,\ t$は実数)で定める.

(1)$s=2$,$t=3$のとき,$\overrightarrow{\mathrm{OP}}=([サ],\ [シ])$である.
(2)$\overrightarrow{\mathrm{OP}}=(2,\ 10)$のとき,$s=[スセ]$,$t=[ソ]$である.
(3)実数$s,\ t$が$4s+5t \leqq 20$,$s \geqq 0$,$t \geqq 0$を満たしながら変化するとき,点$\mathrm{P}$の存在する範囲は原点$\mathrm{O}$,点$([タ],\ [チ])$,$([ツ],\ [テ])$を頂点とする三角形の内部および周である.ただし,$[タ]<[ツ]$とする.
北海道薬科大学 私立 北海道薬科大学 2015年 第3問
$\displaystyle \sin \theta-\cos \theta=\frac{1}{3} \left( 0<\theta<\frac{3}{4} \pi \right)$であるとする.

(1)$\sin \theta \cos \theta$の値は$\displaystyle \frac{[ア]}{[イ]}$である.

(2)$\displaystyle \sin^3 \theta-\cos^3 \theta=\frac{[ウエ]}{[オカ]}$,$\displaystyle \sin^3 \theta+\cos^3 \theta=\frac{[キ] \sqrt{[クケ]}}{[コサ]}$である.

(3)$\displaystyle \tan \theta=\frac{[シ]+\sqrt{[スセ]}}{[ソ]}$である.
東邦大学 私立 東邦大学 2015年 第10問
次のデータは,ある高校$3$年生$9$人の$100$点満点の試験の結果である.
\[ 65,\ 83,\ 64,\ 69,\ 89,\ 68,\ 77,\ 70,\ 81 \]
データを順に,$x_1,\ x_2,\ x_3,\ \cdots,\ x_9$と表す.このとき,$\displaystyle \sum_{i=1}^9 (x_i-\theta)^2$を最小にする$\theta$の値は$[スセ]$である.また,$\displaystyle \sum_{i=1}^9 |x_i-\theta|$を最小にする$\theta$の値は$[ソタ]$である.
西南学院大学 私立 西南学院大学 2015年 第2問
以下の問に答えよ.

(1)正$12$角形の辺と対角線の数を合わせると全部で$[クケ]$本ある.
(2)正$12$角形の辺と対角線を組み合わせてできる四角形は,全部で$[コサシ]$個である.
(3)円$C$に内接する正$12$角形がある.その正$12$角形の隣りあう$2$つの頂点を$\mathrm{A}$,$\mathrm{B}$とする.頂点$\mathrm{A}$を通る直線$\ell$が円$C$に接しているとき,直線$\ell$と直線$\mathrm{AB}$とがなす角は,${[スセ]}^\circ$である.ただし,$0^\circ \leqq {[スセ]}^\circ \leqq {90}^\circ$とする.
獨協医科大学 私立 獨協医科大学 2015年 第5問
$x>-1$で定義された関数$f(x)$は,等式
\[ (x+1)f(x)-\int_0^x f(t) \, dt=\log (x+1)+x-1 \]
を満たしている.

(1)このとき$f(0)=[アイ]$であり,さらに
\[ f^\prime(x)=\frac{x+[ウ]}{(x+[エ])^{\mkakko{オ}}} \]
である.
(2)これをもとに$f(x)$を求めると$f(x)=[カ]-[キ]$である.ただし,$[カ]$,$[キ]$には,次の$\nagamaruichi$~$\nagamaruroku$の中から最も適切なものをそれぞれ一つ選ぶこと.なお,同じ選択肢を選んでもよいものとする.
\[ \nagamaruichi \log x \quad \nagamaruni \log (x+1) \quad \nagamarusan x \log (x+1) \quad \nagamarushi \frac{1}{x} \quad \nagamarugo \frac{1}{x+1} \quad \nagamaruroku \frac{x}{x+1} \]
(3)$a>0$とする.関数$g(x)=\log x$について,区間$[a,\ a+1]$で平均値の定理を用いると,$g(a+1)-g(a)=[ク]$となる実数の定数$c$が区間$[ケ]$に存在する.これを用いると自然数$m$に対する$f(e^m)$と$m$の大小は$f(e^m) [コ] m$となることがわかる.ただし,$[ク]$,$[ケ]$には,次の選択肢$\mathrm{I}$の$\nagamaruichi$~$\nagamarushichi$の中から,$[コ]$には,選択肢$\mathrm{II}$の$\nagamaruichi$~$\nagamarusan$の中から最も適切なものをそれぞれ一つずつ選ぶこと.

選択肢$\mathrm{I}$
$\displaystyle \nagamaruichi c \qquad \nagamaruni c+1 \qquad \nagamarusan \frac{1}{c} \qquad \nagamarushi \frac{1}{c+1} \qquad \nagamarugo \log c$
$\nagamaruroku [a,\ a+1] \qquad \nagamarushichi (a,\ a+1)$
選択肢$\mathrm{II}$
$\displaystyle \nagamaruichi < \qquad \nagamaruni > \qquad \nagamarusan =$

(4)さらに
\[ \int_0^{e^x-1} f(t) \, dt=(x-[サ])(e^x-[シ]) \]
となるので,自然数$n$に対して$\displaystyle p(n)=e^{\frac{2}{3n}}-1$とおくと
\[ \lim_{n \to \infty} n \int_0^{p(n)} f(t) \, dt=\frac{[スセ]}{[ソ]} \]
である.
スポンサーリンク

「スセ」とは・・・

 まだこのタグの説明は執筆されていません。