タグ「z^2」の検索結果

2ページ目:全57問中11問~20問を表示)
鹿児島大学 国立 鹿児島大学 2016年 第7問
次の各問いに答えよ.

(1)複素数$z,\ w$について,次の関係が成立することを示せ.ただし複素数$\alpha$に対し,$\overline{\alpha}$は$\alpha$と共役な複素数を表す.

(i) $\overline{z+w}=\overline{z}+\overline{w}$
(ii) $\overline{zw}=\overline{z} \ \overline{w}$

(2)方程式$z^2-z+1=0$の$2$つの解を$\alpha,\ \beta$とする.次の各問いに答えよ.

(i) $\alpha,\ \beta$を求めよ.さらにそれらを極形式で表せ.
(ii) $\alpha^{100}+\beta^{100}$を求めよ.
福岡教育大学 国立 福岡教育大学 2016年 第3問
複素数$z$は実部が$\displaystyle \frac{\sqrt{5}-1}{4}$,虚部は正で$|z|=1$である.次の問いに答えよ.

(1)$\displaystyle \left( z+\frac{1}{z} \right)^2+\left( z+\frac{1}{z} \right)$の値を求めよ.

(2)$1+z+z^2+z^3+z^4$の値を求めよ.
(3)$z$の偏角$\theta$を求めよ.ただし$0 \leqq \theta<2\pi$とする.
宮崎大学 国立 宮崎大学 2016年 第2問
複素数$z$の方程式$z^3+i=z^2+iz$($i$は虚数単位)の$3$つの解を,その偏角$\theta$(ただし,$0 \leqq \theta<2\pi$)の小さい順に$\alpha,\ \beta,\ \gamma$とする.複素数平面上で,$\alpha,\ \beta,\ \gamma$を表す点をそれぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とし,直線$\mathrm{AC}$に関して$\mathrm{B}$と対称な点を$\mathrm{D}$,直線$\mathrm{AB}$に関して$\mathrm{C}$と対称な点を$\mathrm{E}$とする.このとき,次の各問に答えよ.

(1)$\alpha,\ \beta,\ \gamma$を$x+yi$($x,\ y$は実数)の形でそれぞれ表せ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)複素数平面上で,$3$点$\mathrm{A}$,$\mathrm{D}$,$\mathrm{E}$を通る円周上のどの複素数$z$も,$z \overline{z}+sz+t \overline{z}+u=0$を満たすような複素数の定数$s,\ t,\ u$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
球面$S:x^2-8x+y^2-4y+z^2+6z+20=0$は点$\mathrm{A}([$24$],\ [$25$],\ [$26$])$で$xy$平面と接し,球面$S$と$zx$平面との交わりは中心$\mathrm{B}([$27$],\ [$28$],\ [$29$][$30$])$,半径$\sqrt{[$31$]}$の円である.

球面$S$の中心を$\mathrm{C}$,線分$\mathrm{AB}$を$\sqrt{3}:2$に外分する点を$\mathrm{P}$とすると,$\mathrm{P}$の座標は
\[ \left( [$32$],\ [$33$]+[$34$] \sqrt{[$35$]},\ [$36$]+[$37$] \sqrt{[$38$]} \right) \]
であり,$\displaystyle \angle \mathrm{ACP}=\frac{[$39$]}{[$40$]} \pi$(ただし$0 \leqq \angle \mathrm{ACP} \leqq \pi$)である.また,三角形$\mathrm{BPC}$の辺および内部が球面$S$と交わってできる図形は,長さ$\displaystyle \frac{[$41$]}{[$42$]} \pi$の円弧である.
自治医科大学 私立 自治医科大学 2016年 第9問
複素数$z$は,$1+z+z^2+z^3+z^4+z^5+z^6+z^7+z^8+z^9=0$を満たす.

$\displaystyle \frac{|z-2|^2+|z+2|^2}{5}$の値を求めよ.
北里大学 私立 北里大学 2016年 第1問
次の文中の$[ア]$~$[ヌ]$にあてはまる最も適切な数値を答えなさい.

(1)平面上のベクトル$\overrightarrow{a}$と$\overrightarrow{b}$が
\[ |\overrightarrow{a|}=2,\quad |\overrightarrow{b|}=\sqrt{3},\quad |\overrightarrow{a|-2 \overrightarrow{b}}=2 \sqrt{2} \]
を満たすとき$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$である.また$|\overrightarrow{a|+t \overrightarrow{b}}$を最小にする実数$t$の値は$\displaystyle \frac{[イ]}{[ウ]}$である.

(2)$1$次不定方程式$17x+59y=1$のすべての整数解は,$n$を任意の整数として
\[ x=59n+[エ],\quad y=-17n+[オ] \]
である.
(3)$i$を虚数単位とし,$z=-1+\sqrt{3}i$とすると,
\[ z^2=[カ]+[キ] \sqrt{3}i,\quad z^3=[ク]+[ケ] \sqrt{3}i \]
である.また,$z^n$を$n$について$1$から$9$まで足し合わせると,
\[ \sum_{n=1}^9 z^n=[コ][サ] \left( [シ]+[ス] \sqrt{3}i \right) \]
となる.
(4)$\displaystyle \log_{15}900=[セ]+\frac{[ソ]}{\log_2 [タ]+\log_2 [チ]}$である.

(5)区間$[0,\ \pi]$を定義域とする$2$つの関数$f_1(x)=\cos (x+\alpha)+d$と$f_2(x)=\cos (x-\alpha)-d$を考える.
$\displaystyle \alpha=\frac{\pi}{4},\ d=\frac{1}{4}$のとき,これら$2$つの関数のグラフの交点の$x$座標は
\[ \sin x=\frac{\sqrt{[ツ]}}{[テ]} \]
を満足する.
また,$\displaystyle \alpha=\frac{\pi}{6}$のとき,$\displaystyle d=\frac{[ト]}{[ナ]}$であればこれら$2$つの関数のグラフは,$\displaystyle x=\frac{[ニ]}{[ヌ]} \pi$で接している.
東邦大学 私立 東邦大学 2016年 第2問
空間において,方程式$x^2+y^2+z^2-2x-8y-4z-28=0$で表される曲面を$C$とする.このとき,$C$は中心$([ウ],\ [エ],\ [オ])$,半径$[カ]$の球面である.また,$C$上の点$(-5,\ 6,\ 5)$で接する平面と$z$軸との交点の座標は$(0,\ 0,\ [キク])$である.
東京女子大学 私立 東京女子大学 2016年 第7問
複素数$z$についての方程式$z^4+8z^2+64=0$を解け.
首都大学東京 公立 首都大学東京 2016年 第1問
以下の問いに答えなさい.

(1)次の式を展開しなさい.
\[ (x+y+z)(x^2+y^2+z^2-xy-yz-zx) \]
(2)$a,\ b,\ c$を$0$以上の実数とする.次の不等式が成り立つことを示しなさい.また,等号が成り立つのはどのようなときか答えなさい.
\[ \frac{a+b+c}{3} \geqq \sqrt[3]{abc} \]
富山県立大学 公立 富山県立大学 2016年 第2問
$\displaystyle z=\cos \frac{2\pi}{5}+i \sin \frac{2\pi}{5}$とするとき,次の問いに答えよ.ただし,$i$は虚数単位である.

(1)$z^n=1$となる最小の正の整数$n$を求めよ.
(2)$z^4+z^3+z^2+z+1$の値を求めよ.
(3)$(1+z)(1+z^2)(1+z^4)(1+z^8)$の値を求めよ.
(4)$\displaystyle \cos \frac{2\pi}{5}+\cos \frac{4\pi}{5}$の値を求めよ.
スポンサーリンク

「z^2」とは・・・

 まだこのタグの説明は執筆されていません。