タグ「重心」の検索結果

1ページ目:全136問中1問~10問を表示)
京都大学 国立 京都大学 2016年 第4問
四面体$\mathrm{OABC}$が次の条件を満たすならば,それは正四面体であることを示せ.

条件:頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$からそれぞれの対面を含む平面へ下ろした垂線は対面の重心を通る.

ただし,四面体のある頂点の対面とは,その頂点を除く他の$3$つの頂点がなす三角形のことをいう.
滋賀医科大学 国立 滋賀医科大学 2016年 第1問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=14$,$\mathrm{BC}=15$,$\mathrm{CA}=13$とし,$\overrightarrow{a}=\overrightarrow{\mathrm{CA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{CB}}$とする.

(1)$\triangle \mathrm{ABC}$の重心$\mathrm{G}$について$\overrightarrow{\mathrm{CG}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)$\triangle \mathrm{ABC}$の垂心$\mathrm{H}$について$\overrightarrow{\mathrm{CH}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(3)$\triangle \mathrm{ABC}$の外接円の半径を求め,外心$\mathrm{O}$について$\overrightarrow{\mathrm{CO}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(4)$\triangle \mathrm{ABC}$の内接円の半径を求め,外心$\mathrm{I}$について$\overrightarrow{\mathrm{CI}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
横浜国立大学 国立 横浜国立大学 2016年 第3問
四面体$\mathrm{OABC}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{P}$を$\overrightarrow{\mathrm{OD}}=2 \overrightarrow{b}$,$\overrightarrow{\mathrm{OE}}=3 \overrightarrow{c}$,$\overrightarrow{\mathrm{OP}}=6 \overrightarrow{\mathrm{OG}}$をみたす点とし,平面$\mathrm{ADE}$と直線$\mathrm{OP}$の交点を$\mathrm{Q}$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)三角形$\mathrm{ADE}$の面積を$S_1$,三角形$\mathrm{QDE}$の面積を$S_2$とするとき,$\displaystyle \frac{S_2}{S_1}$を求めよ.
(3)四面体$\mathrm{OADE}$の体積を$V_1$,四面体$\mathrm{PQDE}$の体積を$V_2$とするとき,$\displaystyle \frac{V_2}{V_1}$を求めよ.
横浜国立大学 国立 横浜国立大学 2016年 第3問
四面体$\mathrm{OABC}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{P}$を$\overrightarrow{\mathrm{OD}}=2 \overrightarrow{b}$,$\overrightarrow{\mathrm{OE}}=3 \overrightarrow{c}$,$\overrightarrow{\mathrm{OP}}=6 \overrightarrow{\mathrm{OG}}$をみたす点とし,平面$\mathrm{ADE}$と直線$\mathrm{OP}$の交点を$\mathrm{Q}$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)三角形$\mathrm{ADE}$の面積を$S_1$,三角形$\mathrm{QDE}$の面積を$S_2$とするとき,$\displaystyle \frac{S_2}{S_1}$を求めよ.
(3)四面体$\mathrm{OADE}$の体積を$V_1$,四面体$\mathrm{PQDE}$の体積を$V_2$とするとき,$\displaystyle \frac{V_2}{V_1}$を求めよ.
筑波大学 国立 筑波大学 2016年 第1問
$k$を実数とする.$xy$平面の曲線$C_1:y=x^2$と$C_2:y=-x^2+2kx+1-k^2$が異なる共有点$\mathrm{P}$,$\mathrm{Q}$を持つとする.ただし点$\mathrm{P}$,$\mathrm{Q}$の$x$座標は正であるとする.また,原点を$\mathrm{O}$とする.

(1)$k$のとりうる値の範囲を求めよ.
(2)$k$が$(1)$の範囲を動くとき,$\triangle \mathrm{OPQ}$の重心$\mathrm{G}$の軌跡を求めよ.
(3)$\triangle \mathrm{OPQ}$の面積を$S$とするとき,$S^2$を$k$を用いて表せ.
(4)$k$が$(1)$の範囲を動くとする.$\triangle \mathrm{OPQ}$の面積が最大となるような$k$の値と,そのときの重心$\mathrm{G}$の座標を求めよ.
香川大学 国立 香川大学 2016年 第3問
平面上の三角形$\mathrm{ABC}$は,$\mathrm{AB}=2$,$\mathrm{AC}=3$,$\angle \mathrm{BAC}={60}^\circ$を満たしているとする.また,平面上の動点$\mathrm{P}$に対し実数$f(\mathrm{P})$を
\[ f(\mathrm{P})=\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BP}}+\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{CP}}+\overrightarrow{\mathrm{CP}} \cdot \overrightarrow{\mathrm{AP}} \]
で定める.このとき,次の問に答えよ.

(1)三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とするとき,$f(\mathrm{G})$の値を求めよ.
(2)$\displaystyle f(\mathrm{P})=\frac{8}{3}$となる点$\mathrm{P}$の全体は円になることを示せ.
(3)点$\mathrm{P}$が平面全体を動くとき,$f(\mathrm{P})$のとりうる値の範囲を求めよ.
徳島大学 国立 徳島大学 2016年 第2問
$\triangle \mathrm{OAB}$において,次のように$6$点$\mathrm{P}$,$\mathrm{P}^\prime$,$\mathrm{Q}$,$\mathrm{Q}^\prime$,$\mathrm{R}$,$\mathrm{R}^\prime$を定める.辺$\mathrm{OA}$を$p:(1-p)$に内分する点を$\mathrm{P}$,$p:(1-p)$に外分する点を$\mathrm{P}^\prime$とする.同様に,辺$\mathrm{AB}$を$q:(1-q)$に内分する点を$\mathrm{Q}$,外分する点を$\mathrm{Q}^\prime$とし,辺$\mathrm{BO}$を$r:(1-r)$に内分する点を$\mathrm{R}$,外分する点を$\mathrm{R}^\prime$とする.ただし,$0<p<1$,$0<q<1$,$0<r<1$かつ$\displaystyle p \neq \frac{1}{2}$,$\displaystyle q \neq \frac{1}{2}$,$\displaystyle r \neq \frac{1}{2}$とする.

(1)$\triangle \mathrm{OAB}$の重心と$\triangle \mathrm{PQR}$の重心が一致するとき,$p:q:r$を求めよ.
(2)$\overrightarrow{\mathrm{P}^\prime \mathrm{Q}^\prime}$と$\overrightarrow{\mathrm{P}^\prime \mathrm{R}^\prime}$が平行でないとする.$\triangle \mathrm{OAB}$の重心と$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の重心が一致するとき,$\triangle \mathrm{OAB}$の重心と$\triangle \mathrm{PQR}$の重心が一致することを示せ.
(3)$\overrightarrow{\mathrm{P}^\prime \mathrm{Q}^\prime}$と$\overrightarrow{\mathrm{P}^\prime \mathrm{R}^\prime}$が平行であるとき,$2pqr+p+q+r=pq+qr+rp+1$が成り立つことを示せ.
徳島大学 国立 徳島大学 2016年 第3問
$\triangle \mathrm{OAB}$の頂点を$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 0)$,$\mathrm{B}(a,\ b)$とする.辺$\mathrm{OA}$を$p:(1-p)$に内分する点を$\mathrm{P}$,辺$\mathrm{AB}$を$q:(1-q)$に内分する点を$\mathrm{Q}$,辺$\mathrm{BO}$を$r:(1-r)$に内分する点を$\mathrm{R}$とする.ただし,$0<p<1$,$0<q<1$,$0<r<1$とする.$\triangle \mathrm{OAB}$の面積を$S_1$,$\triangle \mathrm{PQR}$の面積を$S_2$として,次の問いに答えよ.

(1)$\triangle \mathrm{OAB}$の重心と$\triangle \mathrm{PQR}$の重心が一致するとき,$p:q:r$を求めよ.
(2)$3$点$(0,\ 0)$,$(x_1,\ y_1)$,$(x_2,\ y_2)$を頂点とする三角形の面積は,$\displaystyle \frac{1}{2} |x_1y_2-x_2y_1|$で表されることを示せ.
(3)$\displaystyle \frac{S_2}{S_1}$を$p,\ q,\ r$を用いて表せ.
(4)$\triangle \mathrm{OAB}$の重心と$\triangle \mathrm{PQR}$の重心が一致するとき,$\displaystyle \frac{S_2}{S_1}$の最小値を求めよ.
鹿児島大学 国立 鹿児島大学 2016年 第5問
四面体$\mathrm{OABC}$を考える.辺$\mathrm{OA}$を$1:1$に内分する点を$\mathrm{P}$とする.また辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{Q}$として,辺$\mathrm{OC}$を$3:1$に内分する点を$\mathrm{R}$とする.さらに三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面と線分$\mathrm{OG}$の交点を$\mathrm{K}$とする.線分$\mathrm{OK}$と$\mathrm{KG}$の長さの比を求めよ.
鹿児島大学 国立 鹿児島大学 2016年 第4問
四面体$\mathrm{OABC}$を考える.辺$\mathrm{OA}$を$1:1$に内分する点を$\mathrm{P}$とする.また辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{Q}$として,辺$\mathrm{OC}$を$3:1$に内分する点を$\mathrm{R}$とする.さらに三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面と線分$\mathrm{OG}$の交点を$\mathrm{K}$とする.線分$\mathrm{OK}$と$\mathrm{KG}$の長さの比を求めよ.
スポンサーリンク

「重心」とは・・・

 まだこのタグの説明は執筆されていません。