タグ「距離」の検索結果

2ページ目:全233問中11問~20問を表示)
鳥取大学 国立 鳥取大学 2016年 第2問
$xy$平面上に$2$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(-2,\ 0)$と円$C:x^2+y^2-2y=0$,および直線$\ell:y=kx+2k$がある.ただし,$k$は実数とする.

(1)点$\mathrm{A}$と直線$\ell$の距離を$k$を用いて表せ.
(2)直線$\ell$と円$C$が異なる$2$点で交わるように,$k$の値の範囲を求めよ.
(3)直線$\ell$と円$C$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとする.線分$\mathrm{PQ}$について,$\mathrm{PQ}=2 \sqrt{k}$が成り立つとき,$k$の値を求めよ.
(4)$(3)$で求めた$k$に対する直線$\ell$と直線$\mathrm{AB}$のなす角を$\theta$とする.このとき,$\tan \theta$の値を求めよ.ただし,$\displaystyle 0 \leqq \theta<\frac{\pi}{4}$とする.
和歌山大学 国立 和歌山大学 2016年 第4問
$t$を実数とし,$xy$平面上に直線$\ell:y=tx$と曲線$C:y=\log x$がある.次の問いに答えよ.

(1)$\ell$が$C$と共有点をもたないとき,$t$のとり得る値の範囲を求めよ.
(2)$\ell$が$C$と接するとき,$\ell$と$C$および$x$軸で囲まれた部分の面積$S$を求めよ.
(3)正の実数$a$に対して,$C$上の点$\mathrm{A}(a,\ \log a)$と$\ell$の距離を$f(a)$とおく.$f(a)$の最小値を$t$を用いて表せ.
大分大学 国立 大分大学 2016年 第3問
中心が原点$\mathrm{O}$で半径が$a$の定円$C_1$上を,半径$\displaystyle \frac{a}{4}$の円$C_2$が内接しながらすべることなく回転する.円$C_2$上の点$\mathrm{P}$は最初に点$\mathrm{A}(a,\ 0)$にあるとする.円$C_2$の中心を$\mathrm{B}$とするとき,以下の問いに答えなさい.

(1)$\angle \mathrm{AOB}=\theta$とする.$\overrightarrow{\mathrm{BP}}$を$a,\ \theta$で表しなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$a,\ \theta$で表しなさい.
(3)$0 \leqq \theta \leqq 2\pi$のとき,動点$\mathrm{P}$が移動する距離を求めなさい.
鳥取大学 国立 鳥取大学 2016年 第4問
$xy$平面上に$2$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(-2,\ 0)$と円$C:x^2+y^2-2y=0$,および直線$\ell:y=kx+2k$がある.ただし,$k$は実数とする.

(1)点$\mathrm{A}$と直線$\ell$の距離を$k$を用いて表せ.
(2)直線$\ell$と円$C$が異なる$2$点で交わるように,$k$の値の範囲を求めよ.
(3)直線$\ell$と円$C$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとする.線分$\mathrm{PQ}$について,$\mathrm{PQ}=2 \sqrt{k}$が成り立つとき,$k$の値を求めよ.
(4)$(3)$で求めた$k$に対する直線$\ell$と直線$\mathrm{AB}$のなす角を$\theta$とする.このとき,$\tan \theta$の値を求めよ.ただし,$\displaystyle 0 \leqq \theta<\frac{\pi}{4}$とする.
日本医科大学 私立 日本医科大学 2016年 第1問
次の各問いに答えよ.

(1)円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=1+\sqrt{3}$,$\mathrm{BC}=\mathrm{CD}$,$\mathrm{DA}=2$,また$\angle \mathrm{DAB}={60}^\circ$である.四角形$\mathrm{ABCD}$の対角線の交点を$\mathrm{P}$,$\angle \mathrm{BCD}$の二等分線と辺$\mathrm{AB}$との交点を$\mathrm{Q}$,$\mathrm{BD}$と$\mathrm{CQ}$の交点を$\mathrm{R}$とするとき,以下の各問いに答えよ.なお数値の分母は有理化すること.

(i) 辺$\mathrm{BD}$の長さを求めよ.
(ii) $\angle \mathrm{ABD}$の大きさを求めよ.
(iii) 辺$\mathrm{BP}$の長さを求めよ.
\mon[$\tokeishi$] 三角形$\mathrm{PQR}$の内接円の半径を求めよ.

(2)自然数$n$に対して,$n$を$3$で割った余りを$a_n$,$n^2$を$3$で割った余りを$b_n$とするとき,以下の各問いに答えよ.

(i) $\displaystyle \sum_{n=1}^{2016} (a_n+b_n)$の値を求めよ.
(ii) $\displaystyle \sum_{n=1}^m (a_{n+2}+b_{n+1}+2a_n)=2016$を満たす自然数$m$の値を求めよ.

(3)$\mathrm{O}$を原点とする座標平面上に,次のような双曲線$C$と直線$\ell_k$($k$は実数の定数)が与えられているとき,以下の各問いに答えよ.
\[ C:\frac{x^2}{4}-\frac{y^2}{3}=-1 \qquad \ell_k:3x-4y+k=0 \]

(i) $C$と$\ell_k$が接するような$k$の値を求めよ.
(ii) $C$上の点と直線$\ell_0:3x-4y=0$の距離の最小値を求めよ.
早稲田大学 私立 早稲田大学 2016年 第2問
座標空間において,原点$\mathrm{O}$と点$\mathrm{P}(0,\ 0,\ 2)$を直径の両端とする球面を$\mathrm{S}$とする.また$xy$平面上に放物線$\mathrm{C}:y=x^2-2$を描き,$\mathrm{C}$上に点$\mathrm{R}$をとる.線分$\mathrm{PR}$と球面$\mathrm{S}$の交点を$\mathrm{Q}$とし,$\mathrm{Q}$から$xy$平面に下ろした垂線の足を$\mathrm{H}$とする.このとき,以下の問に答えよ.

(1)原点$\mathrm{O}$から点$\mathrm{R}$までの距離を$r$とするとき,線分$\mathrm{QR}$の長さを$r$を用いて表せ.
(2)線分$\mathrm{QH}$の長さを$h$,点$\mathrm{R}$の座標を$(x,\ y,\ 0)$とするとき,$h \geqq 1$である場合に$x$がとる値の範囲を求めよ.
(3)点$\mathrm{R}$が放物線$\mathrm{C}$上のすべての点を動くとき,$h$を最小にする$\mathrm{R}$の座標を求めよ.
(図は省略)
早稲田大学 私立 早稲田大学 2016年 第4問
$3$点$(0,\ 0)$,$(1,\ 0)$,$(0,\ 1)$を頂点とする三角形を$\mathrm{D}$とする.$\mathrm{D}$の$1$辺を選び,その中点を中心として$\mathrm{D}$を${180}^\circ$回転させる.このようにして$\mathrm{D}$から得られる$3$個の三角形からなる集合を$S_1$とする.$S_1$から一つ三角形を選び,さらにその三角形の$1$辺を選び,その中点を中心としてその三角形を${180}^\circ$回転させる.このようにして$S_1$から得られる三角形すべてからなる集合を$S_2$とする.$S_2$は$7$個の三角形からなる集合であり,その中には$\mathrm{D}$も含まれる.一般に,自然数$n$に対して$S_n$まで定義されたとき,$S_n$から一つ三角形を選び,さらにその三角形の$1$辺を選び,その中点を中心としてその三角形を${180}^\circ$回転させる.このようにして$S_n$から得られる三角形すべてからなる集合を$S_{n+1}$とする.次の問に答えよ.

(1)$S_3$の要素を全て図示せよ.
(2)$m$を自然数とする.$S_{2m}$から一つ三角形を選び,その頂点それぞれと原点$(0,\ 0)$との距離の最大値を考える.三角形の選び方をすべて考えたときの,この最大値の最大値$d_{2m}$を求めよ.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$x,\ y$を実数とするとき,座標平面上の点$\mathrm{P}(3 \sin x+5 \sin y,\ 3 \cos x+5 \cos y)$と原点との距離の最小値は$[ア]$であり,最大値は$[イ]$である.
(2)$2016x+401y=1$を満たす整数$x,\ y$で$0<x<401$となるのは,$x=[ウ]$,$y=[エ]$のときである.
(3)$0 \leqq x \leqq 1$のとき,関数$f(x)=\sqrt{x}+2 \sqrt{1-x}$は,$x=[オ]$において最大値$[カ]$をとる.
(4)$\mathrm{O}$を原点とする座標空間内の$2$点$\mathrm{A}(4,\ -1,\ 3)$,$\mathrm{B}(2,\ 1,\ 1)$を通る直線と$xy$平面の交点を$\mathrm{C}$とするとき,$\mathrm{C}$の座標は$[キ]$である.また,直線$\mathrm{AB}$と直線$\mathrm{OC}$のなす角を$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$とすると,$\cos \theta=[ク]$である.
(5)袋の中に赤玉と白玉が合わせて$8$個入っている.この袋の中から$2$個の玉を同時に取り出すとき,取り出した玉が両方とも白である確率が$\displaystyle \frac{5}{14}$である.このとき,袋の中の白玉は$[ケ]$個である.また,取り出した玉を元に戻し,この袋からあらたに$2$個の玉を同時に取り出すとき,赤玉と白玉が$1$個ずつである確率は$[コ]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
$3$つの直線$x+2y-4=0$,$2x-y-2=0$,$x-y+5=0$によって作られる三角形を考える.

(1)三角形の各頂点からの距離の$2$乗和が最小になる点は$\displaystyle \left( \frac{[$19$][$20$]}{[$21$][$22$]},\ \frac{[$23$][$24$]}{[$25$][$26$]} \right)$である.
(2)三角形の各辺からの距離の$2$乗和が最小になる点は$\displaystyle \left( \frac{[$27$][$28$]}{[$29$][$30$]},\ \frac{[$31$][$32$]}{[$33$][$34$]} \right)$である.
神戸薬科大学 私立 神戸薬科大学 2016年 第1問
次の問いに答えよ.

(1)$(x+2)(x+3)(x+4)(x+5)+1$を実数の範囲で因数分解すると$[ア]$である.
(2)$x^{2016}$を$x^2-1$で割った余りを求めると$[イ]$である.
(3)$\cos {28}^\circ+\cos {75}^\circ+\cos {150}^\circ+\cos {208}^\circ+\cos {255}^\circ$の値を求めると$[ウ]$である.
(4)$12707$と$12319$の最大公約数を求めると$[エ]$である.
(5)$2^x=5^y=10$のとき,$\displaystyle \frac{1}{x}+\frac{1}{y}$の値を求めると$[オ]$である.
(6)点$\mathrm{A}(-2,\ 0)$と点$\mathrm{B}(6,\ 0)$からの距離の比が$1:3$となる点$\mathrm{P}$の軌跡の方程式を求めると$[カ]$である.
スポンサーリンク

「距離」とは・・・

 まだこのタグの説明は執筆されていません。