タグ「証明」の検索結果

3ページ目:全1924問中21問~30問を表示)
名古屋大学 国立 名古屋大学 2016年 第4問
次の問に答えよ.ただし$2$次方程式の重解は$2$つと数える.

(1)次の条件$(*)$を満たす整数$a,\ b,\ c,\ d,\ e,\ f$の組をすべて求めよ.
\[ (*) \left\{ \begin{array}{l}
\text{$2$次方程式$x^2+ax+b=0$の$2$つの解が$c,\ d$である.} \\
\text{$2$次方程式$x^2+cx+d=0$の$2$つの解が$e,\ f$である.} \\
\text{$2$次方程式$x^2+ex+f=0$の$2$つの解が$a,\ b$である.}
\end{array} \right. \]
(2)$2$つの数列$\{a_n\},\ \{b_n\}$は,次の条件$(**)$を満たすとする.

\mon[$(**)$] すべての正の整数$n$について,$a_n,\ b_n$は整数であり,$2$次方程式$x^2+a_nx+b_n=0$の$2$つの解が$a_{n+1},\ b_{n+1}$である.

このとき,

(i) 正の整数$m$で,$|b_m|=|b_{m+1|}=|b_{m+2|}=\cdots$となるものが存在することを示せ.
(ii) 条件$(**)$を満たす数列$\{a_n\},\ \{b_n\}$の組をすべて求めよ.
東京大学 国立 東京大学 2016年 第5問
$k$を正の整数とし,$10$進法で表された小数点以下$k$桁の実数
\[ 0.a_1a_2 \cdots a_k=\frac{a_1}{10}+\frac{a_2}{{10}^2}+\cdots +\frac{a_k}{{10}^k} \]
を$1$つとる.ここで,$a_1,\ a_2,\ \cdots,\ a_k$は$0$から$9$までの整数で,$a_k \neq 0$とする.

(1)次の不等式をみたす正の整数$n$をすべて求めよ.
\[ 0.a_1a_2 \cdots a_k \leqq \sqrt{n}-{10}^k<0.a_1a_2 \cdots a_k+{10}^{-k} \]
(2)$p$が$5 \cdot {10}^{k-1}$以上の整数ならば,次の不等式をみたす正の整数$m$が存在することを示せ.
\[ 0.a_1a_2 \cdots a_k \leqq \sqrt{m}-p<0.a_1a_2 \cdots a_k+{10}^{-k} \]
(3)実数$x$に対し,$r \leqq x<r+1$をみたす整数$r$を$[x]$で表す.$\sqrt{s}-[\sqrt{s}]=0.a_1 a_2 \cdots a_k$をみたす正の整数$s$は存在しないことを示せ.
岡山大学 国立 岡山大学 2016年 第2問
座標空間内に,原点$\mathrm{O}(0,\ 0,\ 0)$を中心とする半径$1$の球面$S$と$2$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$がある.$\mathrm{O}$と異なる点$\mathrm{P}(s,\ t,\ 0)$に対し,直線$\mathrm{AP}$と球面$S$の交点で$\mathrm{A}$と異なる点を$\mathrm{Q}$とする.さらに直線$\mathrm{BQ}$と$xy$平面の交点を$\mathrm{R}(u,\ v,\ 0)$とする.このとき以下の問いに答えよ.

(1)ふたつの線分$\mathrm{OP}$と$\mathrm{OR}$の長さの積を求めよ.
(2)$s,\ t$をそれぞれ$u,\ v$を用いて表せ.
(3)点$\mathrm{P}$が$xy$平面内の直線$ax+by=1 (a^2+b^2 \neq 0)$上を動くとき,対応する点$\mathrm{R}$は$xy$平面内の同一円周上にあることを証明せよ.
岡山大学 国立 岡山大学 2016年 第4問
関数$f(x)=8x^3-6x-1$について,以下の問いに答えよ.

(1)$f(x)=0$を満たす実数$x$の個数を求めよ.

(2)$\displaystyle a=\cos \frac{5\pi}{9}$とするとき,$f(a)$の値を求めよ.

(3)不等式
\[ -\frac{1}{5}<\cos \frac{5 \pi}{9}<-\frac{1}{6} \]
を証明せよ.
岡山大学 国立 岡山大学 2016年 第2問
関数$f(x)=8x^3-6x-1$について,以下の問いに答えよ.

(1)$f(x)=0$を満たす実数$x$の個数を求めよ.

(2)$\displaystyle a=\cos \frac{5\pi}{9}$とするとき,$f(a)$の値を求めよ.

(3)不等式
\[ -\frac{1}{5}<\cos \frac{5 \pi}{9}<-\frac{1}{6} \]
を証明せよ.
岡山大学 国立 岡山大学 2016年 第4問
座標空間内に,原点$\mathrm{O}(0,\ 0,\ 0)$を中心とする半径$1$の球面$S$と$2$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$がある.$\mathrm{O}$と異なる点$\mathrm{P}(s,\ t,\ 0)$に対し,直線$\mathrm{AP}$と球面$S$の交点で$\mathrm{A}$と異なる点を$\mathrm{Q}$とする.さらに直線$\mathrm{BQ}$と$xy$平面の交点を$\mathrm{R}(u,\ v,\ 0)$とする.このとき以下の問いに答えよ.

(1)ふたつの線分$\mathrm{OP}$と$\mathrm{OR}$の長さの積を求めよ.
(2)$s$を$u,\ v$を用いて表せ.
(3)$\ell$は$xy$平面内の直線で,原点$\mathrm{O}$を通らないものとする.直線$\ell$上を点$\mathrm{P}$が動くとき,対応する点$\mathrm{R}$は$xy$平面内の同一円周上にあることを証明せよ.
九州工業大学 国立 九州工業大学 2016年 第1問
座標平面上の曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と点$\mathrm{P}(s,\ t) (s>0,\ t>0,\ st<1)$を考える.また,$u=st$とする.点$\mathrm{P}$を通る曲線$C$の$2$本の接線をそれぞれ$\ell_1,\ \ell_2$とし,これらの接線と曲線$C$との接点をそれぞれ$\displaystyle \mathrm{A} \left( a,\ \frac{1}{a} \right)$,$\displaystyle \mathrm{B} \left( b,\ \frac{1}{b} \right)$とする.ただし,$a<b$とする.以下の問いに答えよ.

(1)$a,\ b$を$s,\ t$を用いて表せ.
(2)$2$点$\mathrm{E}(a,\ 0)$,$\mathrm{F}(b,\ 0)$を考える.台形$\mathrm{ABFE}$の面積を$u$を用いて表せ.
(3)$\triangle \mathrm{PAB}$の面積を$u$を用いて表せ.
(4)$(3)$で求めた$\triangle \mathrm{PAB}$の面積を$S(u)$とする.$S(u)$は区間$0<u<1$で減少することを示せ.
(5)点$\mathrm{P}$が$2$点$(3,\ 0)$,$(0,\ 1)$を結ぶ線分上の端点以外にあるものとする.このとき,$\triangle \mathrm{PAB}$の面積が最小となる点$\mathrm{P}$の座標を求めよ.また,そのときの面積を求めよ.
九州大学 国立 九州大学 2016年 第4問
自然数$n$に対して,${10}^n$を$13$で割った余りを$a_n$とおく.$a_n$は$0$から$12$までの整数である.以下の問いに答えよ.

(1)$a_{n+1}$は$10a_n$を$13$で割った余りに等しいことを示せ.
(2)$a_1,\ a_2,\ \cdots,\ a_6$を求めよ.
(3)以下の$3$条件を満たす自然数$N$をすべて求めよ.

(i) $N$を十進法で表示したとき$6$桁となる.
(ii) $N$を十進法で表示して,最初と最後の桁の数字を取り除くと$2016$となる.
(iii) $N$は$13$で割り切れる.
鳴門教育大学 国立 鳴門教育大学 2016年 第4問
次の問いに答えなさい.

(1)$10$進数$999$以下の自然数で,$3$進法で表したとき各位の数字が$0$または$1$であるものの個数を求めなさい.
(2)自然数$n$を$3$進法で表したとき各位の数字が$0$または$1$であるとします.このとき,$n$を$9$進法で表せば,各位の数字が$0,\ 1,\ 3,\ 4$のいずれかになることを示しなさい.
(3)$10$進数$999$以下の自然数で,$3$進法で表したとき各位の数字が$0$または$1$であり,かつ,$9$進法で表したとき各位の数字が$1$または$3$であるものの個数を求めなさい.
埼玉大学 国立 埼玉大学 2016年 第1問
$a,\ b,\ c$は整数とする.次の問いに答えよ.

(1)$a,\ b$がともに偶数ならば,$a+b$は偶数であることを示せ.
(2)$a,\ b$がともに奇数ならば,$ab$は奇数であることを示せ.
(3)$a,\ b$のうち少なくとも一方が偶数であることと,$ab$が偶数であることは同値であることを示せ.
(4)$ab,\ a+b$がともに偶数ならば,$a,\ b$はどちらも偶数であることを示せ.
(5)$abc,\ ab+bc+ca,\ a+b+c$がすべて偶数ならば,$a,\ b,\ c$はすべて偶数であることを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。