タグ「証明」の検索結果

192ページ目:全1924問中1911問~1920問を表示)
京都府立大学 公立 京都府立大学 2010年 第3問
関数$\displaystyle f(x)=\int_0^\pi |t^2-x^2| \sin t \, dt$について,以下の問いに答えよ.

(1)$f(0)$を求めよ.
(2)定数$a$を実数とする.$f(a)$を求めよ.
(3)$f(x)$は$x=\pi$で微分可能であることを示せ.
(4)点$(\pi,\ f(\pi))$における曲線$C:y=f(x)$の接線を$\ell$とする.$C$,$\ell$,および$y$軸で囲まれた部分の面積を求めよ.
京都府立大学 公立 京都府立大学 2010年 第4問
$A$を成分が実数である2次の正方行列,$E$を2次の単位行列とする.数列$\{a_n\}$を漸化式
\[ a_1=1,\quad a_{n+1}=a_n+2^n,\quad (n=1,\ 2,\ \cdots) \]
によって定める.$\displaystyle b_n=\sum_{k=1}^n a_k$とおく.また,座標平面上の点P$_n(x_n,\ y_n)$を
\[ \biggl( \begin{array}{c}
x_1 \\
y_1
\end{array} \biggr) = \biggl( \begin{array}{c}
1 \\
1
\end{array} \biggr),\quad \biggl( \begin{array}{c}
x_{n+1} \\
y_{n+1}
\end{array} \biggr)=A^{b_n}\biggl( \begin{array}{c}
x_1 \\
y_1
\end{array} \biggr),\quad (n=1,\ 2,\ \cdots) \]
によって定める.以下の問いに答えよ.

(1)数列$\{b_n\}$の一般項を求めよ.
(2)$A$は$\sqrt{2}A^2=(1+\sqrt{3})A-\sqrt{2}E$を満たすとする.$A$の逆行列$A^{-1}$が存在することを示せ.
(3)(2),かつ,$\displaystyle x_2=\sqrt{\frac{1}{2}},\ y_2=\sqrt{\frac{3}{2}}$のとき,$x_3,\ y_3$を求めよ.ただし,$A^{-1}$が存在することを証明なしに用いてよい.
(4)(3)のとき,$x_{n+1}=x_1,\ y_{n+1}=y_1$となる最小の自然数$n$を求めよ.
高知工科大学 公立 高知工科大学 2010年 第4問
$r$と$\theta$を$-1<r<1,\ 0 \leqq \theta < 2\pi$を満たす定数とする.行列$A=r \left( \begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$に対して,次の各問に答えよ.

(1)行列$E-A$は逆行列を持つことを証明し,$(E-A)^{-1}$を求めよ.
(2)全ての自然数$n$について
\[ A^n=r^n \left( \begin{array}{rr}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array} \right) \]
が成立することを数学的帰納法を用いて証明せよ.
(3)$n$を2以上の自然数とする.$(E+A+\cdots +A^{n-1})(E-A)$を簡単な式にせよ.
(4)次の極限値を求めよ.
\[ ① \quad \lim_{n \to \infty}\sum_{k=0}^{n-1}r^k \cos k\theta ② \lim_{n \to \infty}\sum_{k=0}^{n-1}r^k \sin k\theta \]
公立はこだて未来大学 公立 公立はこだて未来大学 2010年 第1問
以下の問いに答えよ.

(1)$a>0,\ b>0$に対して,次の命題が成り立つことを証明せよ.
\[ a^2-b^2>0 \ \text{ならば} \ a-b>0 \ \text{である.} \]
(2)実数$x,\ y$が$xy>0$をみたすとき,不等式$|x+y|>|x-y|$を証明せよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2010年 第4問
以下の問いに答えよ.

(1)三角関数の加法定理を用いて,次の等式を証明せよ.
\[ \sin \alpha-\sin \beta=2 \cos \frac{\alpha+\beta}{2}\sin \frac{\alpha-\beta}{2} \]
(2)次の不等式を証明せよ.$|\sin \alpha-\sin \beta| \leqq |\alpha-\beta|$ \\
必要ならば,実数$\theta$に対して成り立つ不等式$|\sin \theta| \leqq |\theta|$を用いてよい.
(3)数列$\{a_n\}$を,次の条件によって定める.
\[ a_1=\frac{\pi}{2},\quad a_{n+1}=\frac{1}{2}\sin a_n+\frac{\pi}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の不等式を証明せよ.$\displaystyle |a_{n+2|-a_{n+1}} \leqq \frac{1}{2} |a_{n+1|-a_n} \ (n=1,\ 2,\ 3,\ \cdots)$
(4)(3)の数列$\{a_n\}$に対して,次の不等式を証明せよ.$\displaystyle |a_{n+1|-a_n} \leqq \left( \frac{1}{2} \right)^n$ \ $(n=1,\ 2,\ 3,\ \cdots)$
会津大学 公立 会津大学 2010年 第6問
以下の問いに答えよ.

(1)$n$を自然数とするとき,次の不等式を証明せよ.
\[ -\frac{1}{n}+\frac{1}{(n+1)^2}<-\frac{1}{n+1} \]
(2)(1)の結果を利用して,すべての自然数$n$に対して次の不等式が成り立つことを数学的帰納法を用いて証明せよ.
\[ 1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots +\frac{1}{(n+1)^2}<2-\frac{1}{n+1} \]
兵庫県立大学 公立 兵庫県立大学 2010年 第3問
$xy$平面において,原点$\mathrm{O}$を中心とする単位円とその \\
単位円周上の点$\mathrm{A}(-1,\ 0)$を考える.$y$軸上の点 \\
$\mathrm{P}(0,\ t)$に対して$\mathrm{A}$と$\mathrm{P}$を結ぶ直線がこの単位円と \\
$\mathrm{A}$以外で交わる点を$\mathrm{Q}$とし,$\mathrm{OQ}$が$x$軸の正の方向 \\
となす角を$\theta$とする.以下の問に答えなさい. \\
ただし,$-\pi<\theta<\pi$とする.
\img{562_2720_2010_2}{42}


(1)$t$を$\theta$で表しなさい.
(2)$\cos \theta$と$\sin \theta$をそれぞれ$t$で表しなさい.
(3)$\cos \theta$と$\sin \theta$の少なくとも一方が無理数であれば,$t$も無理数であることを示しなさい.
富山県立大学 公立 富山県立大学 2010年 第2問
負でない整数$n$に対して,$\displaystyle I_n=\int_0^{\frac{\pi}{4}} \tan^n x \, dx$とする.次の問いに答えよ.

(1)$I_0$と$I_1$の値を求めよ.
(2)$\displaystyle I_n+I_{n+2}=\frac{1}{n+1}$であることを示せ.
(3)$I_2$と$I_3$の値を求めよ.
富山県立大学 公立 富山県立大学 2010年 第3問
$1$個のさいころを$n$回続けて投げるとき,$1$の目が奇数回出る確率$p_n$について,次の問いに答えよ.ただし,$n$は自然数である.

(1)$p_1,\ p_2,\ p_3$を求めよ.
(2)$p_{n+1}$を$p_n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty}p_n=\frac{1}{2}$を示せ.
富山県立大学 公立 富山県立大学 2010年 第4問
$A,\ B,\ C$が同じ次数の正方行列で,$A+B+C=O$かつ$AB=BC=CA$が成り立つとき,次の等式を証明せよ.ただし,$O$は零行列である.

(1)$A^2=B^2=C^2$
(2)$BA=CB=AC$
(3)$ABC=CBA$
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。