タグ「証明」の検索結果

19ページ目:全1924問中181問~190問を表示)
福井大学 国立 福井大学 2016年 第2問
一直線上にない$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.また,$\overrightarrow{\mathrm{OC}}=\overrightarrow{b}-\overrightarrow{a}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{\mathrm{OE}}=\overrightarrow{a}-\overrightarrow{b}$を満たすように点$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$をとる.$0<x<1$を満たす実数$x$に対し,線分$\mathrm{OA}$を$x:(1-x)$に内分する点を$\mathrm{P}$,直線$\mathrm{PC}$と直線$\mathrm{OB}$との交点を$\mathrm{Q}$,直線$\mathrm{QD}$と直線$\mathrm{AB}$との交点を$\mathrm{R}$とするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OQ}}$を,$x,\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OR}}$を,$x,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)直線$\mathrm{RE}$と直線$\mathrm{OA}$との交点が$\mathrm{P}$と一致するとき,$x$の値を求めよ.
(4)$x$を$(3)$で求めた値とするとき,$\triangle \mathrm{PQR}$の重心と$\triangle \mathrm{OAB}$の重心は一致することを証明せよ.
福井大学 国立 福井大学 2016年 第2問
原点を$\mathrm{O}$とする座標平面上に,$\mathrm{F}(5,\ 0)$を焦点の$1$つとし,直線$\ell:y=kx$と$\ell^\prime:y=-kx$とを漸近線にもつ双曲線$C$がある.ただし,$k>0$とする.$C$上の点$\mathrm{Q}(a,\ b)$を通り,$2$本の漸近線に平行な$2$直線のうち,傾きが正のものを$m$,傾きが負のものを$m^\prime$とする.$\ell$と$m^\prime$との交点を$\mathrm{P}$,$\ell^\prime$と$m$との交点を$\mathrm{R}$とし,四角形$\mathrm{OPQR}$の面積を$S$とおくとき,以下の問いに答えよ.

(1)双曲線$C$の方程式を$k$を用いて表せ.
(2)点$\mathrm{P}$,$\mathrm{R}$の座標を,$a,\ b,\ k$を用いて表せ.
(3)$S$は点$\mathrm{Q}$のとり方によらないことを証明せよ.
(4)$k$が$k>0$の範囲を動くとき,$S$の最大値とそのときの$k$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2016年 第4問
$\triangle \mathrm{ABC}$に対し$\overrightarrow{a}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{BC}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{CA}}$として
\[ \overrightarrow{p}=|\overrightarrow{a|} \overrightarrow{b}+|\overrightarrow{b|} \overrightarrow{c}+|\overrightarrow{c|} \overrightarrow{a} \]
によってベクトル$\overrightarrow{p}$を定めるとき,次の問に答えよ.

(1)$\overrightarrow{p}=\overrightarrow{\mathrm{0}}$は$\triangle \mathrm{ABC}$が正三角形であるための必要十分条件であることを証明せよ.
(2)$\overrightarrow{p}=\overrightarrow{a}$かつ$|\overrightarrow{p|}=4$のとき,$\cos \angle \mathrm{ABC}$の値を求めよ.
日本医科大学 私立 日本医科大学 2016年 第2問
次の関数$f(x)$(ただし$x>0$)に関する以下の各問いに答えよ.
\[ f(x)=\int_1^x t(x-t+1)e^{-{(x-t+1)}^2} \, dt \]

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)関数$g(x)$を$\displaystyle g(x)=\frac{1}{2}(e^{-1}-e^{-x^2})$とするとき,$f(x)$と$g(x)$の$x>0$における大小関係を調べよ.
(3)$(2)$の$g(x)$に対して,傾きが$f^\prime(x)-g^\prime(x)$の$x=\sqrt{2}$における値に等しく,点$(1,\ 0)$を通る直線を考えることにより,不等式
\[ 0.115<f(\sqrt{2})<0.165 \]
が成り立つことを示せ.ただし,$0.367<e^{-1}<0.368$,$0.135<e^{-2}<0.136$であることは用いてよい.
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
以下の問いに答えなさい.

(1)$x$を自然数とする.このとき,$x^2$を$4$で割ったときの余りは,$x$が偶数のときは$0$であり,$x$が奇数のときは$1$であることを証明しなさい.
(2)自然数の組$(x,\ y)$について,$5x^2+y^2$が$4$の倍数ならば,$x,\ y$はともに偶数であることを証明しなさい.
(3)自然数の組$(x,\ y)$で$5x^2+y^2=2016$を満たすものをすべて求めなさい.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
$f(x)$は$2$次関数であり,$f(0)=f(1)=0$を満たすとする.

(1)$\displaystyle a=\frac{1}{2}f^{\prime\prime}(0)$とする.このとき,$f(x)$は$a$を用いて$f(x)=[キ]$と表される.
(2)定積分
\[ \int_0^1 \{(f^\prime(x)-x)^2-f(x)\} \, dx \]
の値が最も小さくなるのは$f(x)=[ク]$のときである.また,そのときの定積分の値は$[ケ]$である.
以下では,$f(x)=[ク]$,$m=[ケ]$とする.
(3)関数$h(x)$は$h(0)=h(1)=0$を満たし,その導関数$h^\prime(x)$は連続であるとする.さらに,$I$と$J$を


$\displaystyle I=\int_0^1 \{(f^\prime(x)+h^\prime(x)-x)^2-(f(x)+h(x))\} \, dx$

$\displaystyle J=\int_0^1 \{(f^\prime(x)-x)^2-f(x)\} \, dx+\int_0^1 (h^\prime(x))^2 \, dx$


で定める.このとき,等式
\[ I=J \]
を証明しなさい.
(4)関数$g(x)$は$g(0)=g(1)=0$を満たし,その導関数$g^\prime(x)$は連続であるとする.このとき,不等式
\[ \int_0^1 \{(g^\prime(x)-x)^2-g(x)\} \, dx \geqq m \]
を証明しなさい.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$i$を虚数単位とする.次の事実がある.
\begin{waku}[事実$\mathrm{F}$]
$a,\ b$を互いに素な正の整数とする.このとき,
\[ \left( \cos \frac{2a}{b} \pi+i \sin \frac{2a}{b} \pi \right)^k=\cos \frac{2}{b} \pi+i \sin \frac{2}{b} \pi \]
となる整数$k$が存在する.
\end{waku}

(1)等式
\[ \left( \cos \frac{4}{5} \pi+i \sin \frac{4}{5} \pi \right)^k=\cos \frac{2}{5} \pi+i \sin \frac{2}{5} \pi \]
を満たす最小の正の整数$k$は$[ツ]$である.
(2)$a,\ b$を互いに素な正の整数とし,集合$P$を
\[ P=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a}{b} \pi+i \sin \frac{2a}{b} \pi \right)^k \text{と表される複素数} \right\} \]
で定める.事実$\mathrm{F}$を考慮すると,集合$P$の要素の個数$n(P)$は$[テ]$である.
(3)事実$\mathrm{F}$を証明しなさい.
(4)$a_1,\ b_1$を互いに素な正の整数とし,$a_2,\ b_2$も互いに素な正の整数とする.集合$Q_1$と$Q_2$を

$\displaystyle Q_1=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a_1}{b_1} \pi+i \sin \frac{2a_1}{b_1} \pi \right)^k \text{と表される複素数} \right\}$

$\displaystyle Q_2=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a_2}{b_2} \pi+i \sin \frac{2a_2}{b_2} \pi \right)^k \text{と表される複素数} \right\}$

で定め,集合$R$を
\[ R=\{z \;\bigg|\; \text{$z$は集合$Q_1$の要素と集合$Q_2$の要素の積で表される複素数}\} \]
で定める.$b_1$と$b_2$が互いに素ならば,集合$R$の要素の個数$n(R)$は$[ト]$である.$b_1$と$b_2$が互いに素でないとき,それらの最大公約数を$d$とすれば,集合$R$の要素の個数$n(R)$は$[ナ]$である.
早稲田大学 私立 早稲田大学 2016年 第1問
正の整数$m,\ n$に対して$f(m,\ n)$が次の等式を満たすように定められている.
\[ \left\{ \begin{array}{l}
f(1,\ 1)=1,\quad f(2,\ 2)=6,\quad f(3,\ 3)=20 \\
f(m,\ n)=2f(m-1,\ n) \quad (m \geqq 2) \phantom{\frac{[ ]}{2}} \\
f(m,\ n)+3f(m,\ n-2)=3f(m,\ n-1)+f(m,\ n-3) \quad (n \geqq 4) \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
次の問に答えよ.

(1)$f(m,\ 1)$および$f(1,\ n)$をそれぞれ$m,\ n$の式で表せ.
(2)$f(6,\ 32)$の値を求めよ.
(3)任意の正の整数$l$に対して,$f(m,\ n)=l$を満たす正の整数$m,\ n$が存在することを示せ.
早稲田大学 私立 早稲田大学 2016年 第4問
以下の問に答えよ.

(1)次の空欄にあてはまる式または数を記入せよ.
半径$1$の円$\mathrm{O}$に内接する長方形$\mathrm{ABCD}$がある.角$\mathrm{OAB}$を$\displaystyle x \left( 0<x<\frac{\pi}{2} \right)$とするとき,長方形$\mathrm{ABCD}$の面積は$[ア]$となる.したがって,$x=[イ]$のとき最大面積$[ウ]$をとる.
(2)半径$1$の円$\mathrm{O}$に内接する$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$の内角
\[ \mathrm{A}_k \mathrm{A}_{k+1} \mathrm{A}_{k+2} \quad (k=1,\ 2,\ \cdots,\ n,\ n \geqq 3 \;;\; \text{ただし,} \mathrm{A}_{n+1}=\mathrm{A}_1,\ \mathrm{A}_{n+2}=\mathrm{A}_2) \]
がすべて$\alpha (0<\alpha<\pi)$に等しいとする.このとき,次の問に答えよ.

(i) $a_k (k=1,\ 2,\ \cdots,\ n)$は弧$\mathrm{A}_k \mathrm{A}_{k+1}$の長さを表すとする.角$\displaystyle \mathrm{OA}_k \mathrm{A}_{k+1}=\theta_k \left( 0<\theta_k<\frac{\pi}{2} \right)$とおくとき,$a_k$,$a_{k+1}$および$a_k+a_{k+1}$を,$\theta_k$,$\alpha$を用いて表せ.
(ii) $n$が奇数のとき,$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$は正$n$角形となることを示せ.
(iii) $n$が偶数のとき,$\theta_1=\theta_3=\cdots =\theta_{n-1}$を示せ.さらに,その等しい角を$\theta$とおいて,$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$の面積$S_n(\theta)$を$\alpha$,$\theta$を用いて表せ.
\mon[$\tokeishi$] $\alpha$を$n$の式で表し,$(ⅲ)$における$S_n(\theta)$の最大値とそのときの$\theta$を$n$の式で表せ.

(図は省略)
早稲田大学 私立 早稲田大学 2016年 第2問
$2$つの複素数$w,\ z (z \neq 0)$の間に
\[ w=z-\frac{7}{4z} \]
という関係がある.ここで$w=x+yi$($x,\ y$は実数,$i$は虚数単位)と表すとき,以下の問に答えよ.

(1)複素数平面上で$z$が原点$\mathrm{O}$を中心として半径$\displaystyle \frac{7}{2}$の円周上を動くとする.このとき$w$が描く曲線$C$を座標平面上の$x$と$y$の方程式で表示せよ.
(2)$(1)$で得られた曲線$C$上の点$\mathrm{P}(s,\ t) (s>0,\ t>0)$における曲線$C$の接線が$x$軸と交わる点を$\mathrm{Q}$,$y$軸と交わる点を$\mathrm{R}$とする.このとき原点$\mathrm{O}$と$\mathrm{Q}$と$\mathrm{R}$とを頂点とする直角三角形$\triangle \mathrm{OQR}$を$y$軸のまわりに$1$回転してできる円錐の体積の最小値を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。