タグ「計算」の検索結果

2ページ目:全152問中11問~20問を表示)
久留米大学 私立 久留米大学 2016年 第3問
次の計算をしなさい.対数は自然対数とする.
\[ \int_0^3 \frac{x^2}{\sqrt{1+x}} \, dx=[$7$],\qquad \int_1^{\sqrt{3}} 2x \log (1+x^2) \, dx=[$8$] \]
西南学院大学 私立 西南学院大学 2016年 第3問
以下の計算をせよ.

(1)$\displaystyle \sum_{k=0}^8 \comb{8}{k}=[オ][カ][キ]$
(2)$\displaystyle \sum_{k=0}^8 (-1)^k \comb{8}{k}+\sum_{k=0}^8 \comb{8}{k}=[ク][ケ][コ]$
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[ク]$に当てはまる数または式を記入せよ.

(1)赤と青の$2$色を両方とも必ず用いて,正四面体の各面を塗り分ける場合の数は$[ア]$通りである.ただし,回転して一致する場合は同じものとみなす.
(2)$n$を$1 \leqq n \leqq 16$を満たす整数とする.$5n$を$17$で割ったときの余りが$1$となるとき,$n=[イ]$である.
(3)$A=\log_4 120-\log_4 6-\log_4 10$を計算すると,$A=[ウ]$である.
(4)$k$を実数とし,$2$次方程式$x^2+kx-1=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2-(k+4)x+1=0$が$2$つの解$\alpha^2$と$\beta^2$を持つとき,$k$の値をすべて求めると,$k=[エ]$である.
(5)$a,\ b$を実数とする.$x$の$2$次式$f(x)$が,$x^2 f^\prime(x)-f(x)=x^3+ax^2+bx$を満たすとき,$a+b=[オ]$である.
(6)三角形$\mathrm{ABC}$の辺の長さがそれぞれ$\mathrm{AB}=2$,$\mathrm{BC}=3$,$\mathrm{CA}=4$のとき,三角形$\mathrm{ABC}$に内接する円の半径は$[カ]$である.
(7)$\displaystyle 0 \leqq \theta<\frac{\pi}{2}$において,$\tan \theta=2$が成り立つとき,$\cos \theta=[キ]$である.
(8)曲線$y=x^3-x^2+x+1$と曲線$y=x^3-2x^2+5x-2$で囲まれた図形の面積は$[ク]$である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2016年 第4問
次の式を計算せよ.
\[ (\sqrt{2}-1)^7 \]
広島国際学院大学 私立 広島国際学院大学 2016年 第4問
以下の問いに答えなさい.

(1)次の式を簡単にしなさい.
\[ \frac{1}{1-\displaystyle\frac{1}{1+x}} \]
(2)次の不定積分を計算しなさい.
\[ \int (2x^3-x) \, dx \]
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2016年 第3問
$a$を正の定数,$e$を自然対数の底として,$\displaystyle f(x)=\int_0^a |xe^x-te^t| \, dt (0 \leqq x \leqq a)$とする.以下の$[ ]$にあてはまる適切な数,または式を記入しなさい.また,$(2)$に答えなさい.

(1)$f(0)=[ ]$であり,$f(a)=[ ]$である.
(2)$f(x)$を$a$と$x$を用いた式で表せ(途中の計算式も合わせて記載せよ).
(3)$f^\prime(x)=0$のとき,$x=[ ]$である.
(4)$f(x)$の最小値は$[ ]$,最大値は$[ ]$である.
明治大学 私立 明治大学 2016年 第2問
同一平面上において,点$\mathrm{O}$を中心とする半径$10$の円周上に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.線分$\mathrm{AB}$と直線$\mathrm{CO}$は交点を持ち,この交点を$\mathrm{P}$とする.$\mathrm{CP}=14$であり,$\mathrm{AP}:\mathrm{BP}=2:3$である.以下の問に答えなさい.

(1)$\overrightarrow{\mathrm{CA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CB}}=\overrightarrow{b}$とすると,$\displaystyle \overrightarrow{\mathrm{CP}}=\frac{[チ] \overrightarrow{a}+[ツ] \overrightarrow{b}}{[テ]}$である.
また,$\displaystyle \overrightarrow{\mathrm{OA}}=\frac{[ト] \overrightarrow{a}-[ナ] \overrightarrow{b}}{[ニ]}$と表すことができる.
(2)$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$についての計算から,内積$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b}=\frac{[ヌ][ネ][ノ]}{[ハ]}$となる.

さらに,$\mathrm{CA}=[ヒ] \sqrt{[フ][ヘ]}$,$\mathrm{CB}=[ホ] \sqrt{[マ]}$である.

(3)三角形$\mathrm{ABC}$の面積は$\displaystyle \frac{[ミ][ム][メ] \sqrt{[モ]}}{[ヤ]}$である.
明治大学 私立 明治大学 2016年 第2問
次の$[ ]$に適する数を入れよ.

(1)${48}^{30}$は$[ア][イ]$桁の数である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$として計算せよ.
(2)放物線$y=x^2-7x+6$と直線$y=x-1$は$2$点$([ウ],\ [エ])$,$([オ],\ [カ])$(ただし,$[ウ]<[オ]$)で交わり,両者によって囲まれる部分の面積は$[キ][ク]$である.
(3)$\mathrm{A}$と$\mathrm{B}$が,あるゲームで対戦している.$\mathrm{A}$と$\mathrm{B}$の強さは互角で,$1$回の対戦で勝つ確率はいずれも$\displaystyle \frac{1}{2}$である.引き分けは,ないものとする.

(i) $5$回目の対戦が終わったところで,$\mathrm{A}$が$3$勝,$\mathrm{B}$が$2$勝している確率は$\displaystyle \frac{[ケ]}{[コ][サ]}$である.
(ii) $\mathrm{B}$が先に$3$勝する前に$\mathrm{A}$が先に$2$勝する確率は$\displaystyle \frac{[シ][ス]}{[セ][ソ]}$である.
獨協医科大学 私立 獨協医科大学 2016年 第5問
$xy$平面上の放物線$y=x^2$の$0 \leqq x \leqq 1$に対応する部分の長さを$L$とする.$L$の値を次のようにして求めよう.$L$は定積分
\[ L=\int_0^1 \sqrt{1+[ア]x^2} \, dx \]
で定まる.この定積分を計算するために$\displaystyle x=\frac{e^t-e^{-t}}{4}$として,置換積分を行う.このとき
\[ \frac{dx}{dt}=\frac{e^t+e^{-t}}{4} \]
であり
\[ \sqrt{1+[ア]x^2}=\frac{e^t+e^{-t}}{[イ]} \]
である.

また,$\displaystyle \frac{e^t-e^{-t}}{4}=1$となる$t$の値を$\alpha$とすると,$x$が$0 \to 1$と変化するとき,$t$は$[ウ] \to \alpha$と変化するので,$L$を定める定積分は
\[ L=\frac{1}{[エ]} \int_{\mkakko{ウ}}^\alpha (e^t+e^{-t})^{\mkakko{オ}} \, dt \]
となる.ここで$X=e^\alpha$とおくと,$X$は$2$次方程式
\[ X^2-[カ]X-[キ]=0 \]
の解である.$X>0$なので
\[ X=[ク]+\sqrt{[ケ]} \]
である.これを用いて$\alpha$の値を定め,$L$の値を計算すると
\[ L=\frac{\sqrt{[コ]}}{[サ]}+\frac{1}{[シ]} \log \left( [ス]+\sqrt{[セ]} \right) \]
である.
東京電機大学 私立 東京電機大学 2016年 第1問
次の各問に答えよ.

(1)不等式$x^2-x-5<|2x-1|$を解け.
(2)和が$22$,最小公倍数が$60$となる$2$つの自然数を求めよ.
(3)関数$y=4 \sin^2 x-4 \cos x-3 (0 \leqq x \leqq \pi)$の最大値を求めよ.またそのときの$x$の値を求めよ.
(4)曲線$y=e^x$上の点$(t,\ e^t)$と直線$y=2x$の距離を$d(t)$とする.$d(t)$の最小値を求めよ.
(5)不定積分$\displaystyle \int \log 2x \, dx$を計算せよ.ただし積分定数は$C$とすること.
スポンサーリンク

「計算」とは・・・

 まだこのタグの説明は執筆されていません。