タグ「角度」の検索結果

7ページ目:全901問中61問~70問を表示)
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
山形大学 国立 山形大学 2016年 第4問
$\mathrm{AB}=\mathrm{BC}=2$,$\displaystyle \angle \mathrm{ABC}=\frac{\pi}{2}$とする$\triangle \mathrm{ABC}$がある.辺$\mathrm{AC}$上に$\mathrm{A}$と異なる点$\mathrm{E}$をとり,$\mathrm{E}$から辺$\mathrm{AB}$に垂線$\mathrm{EF}$を下ろし,$\mathrm{EF}=\mathrm{AF}=x (0<x \leqq 2)$とする.また,線分$\mathrm{AF}$の$\mathrm{F}$を越える延長上に$\mathrm{AG}=2 \mathrm{AF}$となる点$\mathrm{G}$をとる.$\mathrm{EF}$,$\mathrm{FG}$を$2$辺とする正方形$\mathrm{EFGH}$と$\triangle \mathrm{ABC}$の共通部分の面積を$S(x)$とするとき,次の問いに答えよ.

(1)$S(x)$を求めよ.
(2)$xy$平面において,連立不等式$0 \leqq y \leqq S(x)$,$\displaystyle x \geqq \frac{1}{2}$の表す領域$D$を考える.点$(1,\ 1)$を通り,$D$の面積を二等分する直線を$\ell$とする.

(i) $D$の面積を求めよ.
(ii) 直線$\ell$の方程式を求めよ.
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
電気通信大学 国立 電気通信大学 2016年 第3問
座標空間に$3$点$\mathrm{A}(-1,\ -1,\ 2)$,$\mathrm{B}(1,\ 1,\ 2)$,$\mathrm{C}(1,\ -1,\ -2)$をとる.線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,原点$\mathrm{O}$を中心として$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る球面を$S$とするとき,以下の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OM}}$,$\overrightarrow{\mathrm{CM}}$をそれぞれ成分で表せ.
(2)$\angle \mathrm{AMC}$の大きさ$\theta$を$0 \leqq \theta \leqq \pi$の範囲で求めよ.
(3)三角形$\mathrm{ABC}$の面積を求めよ.
(4)原点$\mathrm{O}$から三角形$\mathrm{ABC}$に垂線$\mathrm{OH}$を下ろす.線分$\mathrm{OH}$の長さを求めよ.
(5)点$\mathrm{P}$が球面$S$上を動くとき,四面体$\mathrm{ABCP}$の体積の最大値を求めよ.
東京海洋大学 国立 東京海洋大学 2016年 第4問
$\triangle \mathrm{ABC}$に対し$\overrightarrow{a}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{BC}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{CA}}$として
\[ \overrightarrow{p}=|\overrightarrow{a|} \overrightarrow{b}+|\overrightarrow{b|} \overrightarrow{c}+|\overrightarrow{c|} \overrightarrow{a} \]
によってベクトル$\overrightarrow{p}$を定めるとき,次の問に答えよ.

(1)$\overrightarrow{p}=\overrightarrow{\mathrm{0}}$は$\triangle \mathrm{ABC}$が正三角形であるための必要十分条件であることを証明せよ.
(2)$\overrightarrow{p}=\overrightarrow{a}$かつ$|\overrightarrow{p|}=4$のとき,$\cos \angle \mathrm{ABC}$の値を求めよ.
福井大学 国立 福井大学 2016年 第2問
四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$のどの$2$辺も互いに直交し,長さがすべて$1$である.$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{C}$を通る平面上に点$\mathrm{D}$を
\[ \mathrm{OD}=1,\quad 0^\circ<\angle \mathrm{BOD}<{90}^\circ,\quad 0^\circ<\angle \mathrm{COD}<{90}^\circ \]
となるようにとり,$\angle \mathrm{BOD}=\theta$,$\cos \theta=x$とおく.線分$\mathrm{AB}$を$(x+2):x$に外分する点を$\mathrm{E}$,線分$\mathrm{AC}$を$x:(1-x)$に内分する点を$\mathrm{F}$,三角形$\mathrm{DEF}$の重心を$\mathrm{G}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OD}}$を,$x,\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また,$\overrightarrow{\mathrm{OG}}$を,$x,\ \overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)点$\mathrm{G}$が$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{C}$を通る平面上にあるような$x$の値を求めよ.
(3)$\overrightarrow{\mathrm{OG}}$と$\overrightarrow{\mathrm{DF}}$の内積の最小値と,そのときの$x$の値を求めよ.
福井大学 国立 福井大学 2016年 第3問
一直線上にない$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.また,$\overrightarrow{\mathrm{OC}}=\overrightarrow{b}-\overrightarrow{a}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{\mathrm{OE}}=\overrightarrow{a}-\overrightarrow{b}$を満たすように点$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$をとる.$0<x<1$を満たす実数$x$に対し,線分$\mathrm{OA}$を$x:(1-x)$に内分する点を$\mathrm{P}$,直線$\mathrm{PC}$と直線$\mathrm{OB}$との交点を$\mathrm{Q}$,直線$\mathrm{QD}$と直線$\mathrm{AB}$との交点を$\mathrm{R}$とするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OQ}}$を,$x,\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OR}}$を,$x,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)直線$\mathrm{RE}$と直線$\mathrm{OA}$との交点が$\mathrm{P}$と一致するとき,$x$の値を求めよ.
(4)$x$を$(3)$で求めた値とする.$\mathrm{OA}=\mathrm{OB}=1$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$のとき,$\mathrm{PQ}^2$の値を求めよ.
日本医科大学 私立 日本医科大学 2016年 第1問
次の各問いに答えよ.

(1)円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=1+\sqrt{3}$,$\mathrm{BC}=\mathrm{CD}$,$\mathrm{DA}=2$,また$\angle \mathrm{DAB}={60}^\circ$である.四角形$\mathrm{ABCD}$の対角線の交点を$\mathrm{P}$,$\angle \mathrm{BCD}$の二等分線と辺$\mathrm{AB}$との交点を$\mathrm{Q}$,$\mathrm{BD}$と$\mathrm{CQ}$の交点を$\mathrm{R}$とするとき,以下の各問いに答えよ.なお数値の分母は有理化すること.

(i) 辺$\mathrm{BD}$の長さを求めよ.
(ii) $\angle \mathrm{ABD}$の大きさを求めよ.
(iii) 辺$\mathrm{BP}$の長さを求めよ.
\mon[$\tokeishi$] 三角形$\mathrm{PQR}$の内接円の半径を求めよ.

(2)自然数$n$に対して,$n$を$3$で割った余りを$a_n$,$n^2$を$3$で割った余りを$b_n$とするとき,以下の各問いに答えよ.

(i) $\displaystyle \sum_{n=1}^{2016} (a_n+b_n)$の値を求めよ.
(ii) $\displaystyle \sum_{n=1}^m (a_{n+2}+b_{n+1}+2a_n)=2016$を満たす自然数$m$の値を求めよ.

(3)$\mathrm{O}$を原点とする座標平面上に,次のような双曲線$C$と直線$\ell_k$($k$は実数の定数)が与えられているとき,以下の各問いに答えよ.
\[ C:\frac{x^2}{4}-\frac{y^2}{3}=-1 \qquad \ell_k:3x-4y+k=0 \]

(i) $C$と$\ell_k$が接するような$k$の値を求めよ.
(ii) $C$上の点と直線$\ell_0:3x-4y=0$の距離の最小値を求めよ.
南山大学 私立 南山大学 2016年 第3問
$\mathrm{O}$を原点とする座標空間に$4$点$\mathrm{A}(2,\ 0,\ 4)$,$\mathrm{B}(0,\ 4,\ 0)$,$\mathrm{C}(3,\ 1,\ 0)$,$\mathrm{D}(-1,\ 0,\ 1)$がある.

(1)$\angle \mathrm{BCD}$を求めよ.
(2)$\triangle \mathrm{BCD}$の面積$S$を求めよ.
(3)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を通る球面の半径と中心の座標を求めよ.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[サ]$に当てはまる数または式を記入せよ.

(1)$0 \leqq \theta \leqq \pi$の範囲で,$\cos^2 \theta+\sin \theta \cos \theta=0$を満たす$\theta$をすべて求めると$\theta=[ア]$である.
(2)$10$本のくじのうち当たりくじは$n$本である.同時に$2$本のくじを引いたとき,$2$本ともはずれである確率は$\displaystyle \frac{1}{15}$であった.このとき,$n=[イ]$である.
(3)$\mathrm{AB}=20$,$\mathrm{BC}=24$,$\mathrm{AC}=16$である三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の二等分線が$\mathrm{BC}$と交わる点を$\mathrm{D}$とする.このとき,$\mathrm{BD}=[ウ]$である.
(4)頂点が反時計回りに$\mathrm{ABCDEF}$である正六角形について,$\overrightarrow{\mathrm{FB}}=a \overrightarrow{\mathrm{AB}}+b \overrightarrow{\mathrm{AC}}$と表したとき,$a=[エ]$,$b=[オ]$である.ただし,$a$と$b$は実数とする.
(5)$(3+i)(x+yi)=6+5i$を満たす実数$x,\ y$を求めると,$x=[カ]$,$y=[キ]$である.ただし,$i$は虚数単位とする.
(6)直線$\ell$に関して点$(3,\ 2)$と対称な点は$(1,\ 4)$である.このとき,直線$\ell$の方程式を$ax+by=1$とすると,$a=[ク]$,$b=[ケ]$である.
(7)$975$の正の約数の個数は$[コ]$個である.
(8)$-1 \leqq x \leqq 5$の範囲で,関数$\displaystyle f(x)=\int_{-3}^x (t^2-2t-3) \, dt$が最小値をとるのは$x=[サ]$のときである.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。