タグ「角度」の検索結果

6ページ目:全901問中51問~60問を表示)
島根大学 国立 島根大学 2016年 第3問
複素数平面上に点$\mathrm{O}(0)$,$\mathrm{P}(-1+\sqrt{3}i)$,$\mathrm{Q}(2)$と,これら$3$点を通る円$C$がある.ただし,$i$は虚数単位とする.このとき,次の問いに答えよ.

(1)複素数$-1+\sqrt{3}i$を極形式で表せ.ただし,偏角$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(2)$\angle \mathrm{OPQ}$の大きさを求めよ.
(3)円$C$と虚軸との交点のうち,$\mathrm{O}$でない点を$\mathrm{R}$とする.$\mathrm{R}$を表す複素数を求めよ.
(4)円$C$の中心を表す複素数を$c$とする.点$z$が円$C$上を動くとき,複素数$\displaystyle w=\frac{z-1}{z-c}$がえがく図形を図示せよ.
宇都宮大学 国立 宇都宮大学 2016年 第2問
平面上に$\mathrm{OA}=4$,$\mathrm{AB}=9$,$\mathrm{OB}=7$となるような$\triangle \mathrm{OAB}$があり,$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OC}}$と$k \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}$が平行になるような実数$k$を求めよ.
(3)$(2)$の結果を用いて,$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(4)$|\overrightarrow{\mathrm{OC|}}$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2016年 第2問
平面上に$\mathrm{OA}=4$,$\mathrm{AB}=9$,$\mathrm{OB}=7$となるような$\triangle \mathrm{OAB}$があり,$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OC}}$と$k \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}$が平行になるような実数$k$を求めよ.
(3)$(2)$の結果を用いて,$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(4)$|\overrightarrow{\mathrm{OC|}}$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2016年 第2問
平面上に$\mathrm{OA}=4$,$\mathrm{AB}=9$,$\mathrm{OB}=7$となるような$\triangle \mathrm{OAB}$があり,$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OC}}$と$k \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}$が平行になるような実数$k$を求めよ.
(3)$(2)$の結果を用いて,$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(4)$|\overrightarrow{\mathrm{OC|}}$の値を求めよ.
愛媛大学 国立 愛媛大学 2016年 第5問
正方形$\mathrm{ABCD}$の内部の点$\mathrm{P}$に対して$\angle \mathrm{CPD}$が直角であるとき,$\displaystyle \frac{\mathrm{BP}}{\mathrm{AP}}$の最大値を求めよ.
山梨大学 国立 山梨大学 2016年 第3問
$xy$平面上に$5$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 1)$,$\mathrm{B}(1,\ 0)$,$\displaystyle \mathrm{P} \left( \frac{1}{2},\ t \right)$ \ $\displaystyle \left( \frac{1}{2} \leqq t<1 \right)$,$\displaystyle \mathrm{Q}(\alpha,\ 0)$ \ $\displaystyle \left( \frac{1}{2} \leqq \alpha \leqq 1 \right)$がある.$\mathrm{A}$,$\mathrm{P}$を通る直線を$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)$\triangle \mathrm{APB}$において,$\angle \mathrm{APB} \leqq {90}^\circ$を示せ.
(3)$\ell$に垂直で$\mathrm{Q}$を通る直線を$m$とする.$\ell$と$m$の交点を$\mathrm{R}$とするとき,$\mathrm{R}$の$x$座標を$\alpha$と$t$を用いた式で表せ.
(4)$(3)$の$\mathrm{R}$が線分$\mathrm{PA}$上にあるための$\alpha$の範囲を$t$を用いた式で表せ.
山梨大学 国立 山梨大学 2016年 第1問
次の問いに答えよ.

(1)$\angle \mathrm{A}={90}^\circ$の直角二等辺三角形$\mathrm{ABC}$において,$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$上の点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.線分$\mathrm{AQ}$,$\mathrm{BR}$,$\mathrm{CP}$は$1$点で交わり,$\mathrm{AP}:\mathrm{PB}=3:1$かつ$\angle \mathrm{ARB}={60}^\circ$とする.このとき,$\displaystyle \frac{\mathrm{BQ}}{\mathrm{QC}}$を求めよ.
(2)複素数$z$の方程式$z^4=-8-8 \sqrt{3}i$の解をすべて求めよ.
(3)初項$a_1=3$,公差$4$の等差数列$\{a_n\}$の一般項を求めよ.また,$a_1,\ a_2,\ \cdots,\ a_n$の$n$個の値からなるデータの平均値$m$および分散$s^2$を,$n$を用いた式で表せ.
旭川医科大学 国立 旭川医科大学 2016年 第2問
原点$\mathrm{O}$を中心とする単位円周上に$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$,および$y>0$を満たす動点$\mathrm{C}(x,\ y)$がある.$\angle \mathrm{BAC}=\theta$とするとき,次の問いに答えよ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.

(1)$\triangle \mathrm{ABC}$の面積を$\theta$を用いて表せ.
(2)$\triangle \mathrm{ABC}$の内接円$\mathrm{O}_1$の半径$r_1$を$\theta$を用いて表せ.
(3)$x$軸,辺$\mathrm{AC}$の延長線,および辺$\mathrm{BC}$とそれぞれ接する円$\mathrm{O}_2$を考える.$x$軸上の接点を$\mathrm{D}$,辺$\mathrm{AC}$の$\mathrm{C}$側の延長上の接点を$\mathrm{E}$,そして辺$\mathrm{BC}$上の接点を$\mathrm{F}$とする.

(i) $\mathrm{AD}$の長さを$\theta$を用いて表せ.
(ii) 円$\mathrm{O}_2$の半径$r_2$を$\theta$を用いて表せ.
(iii) 円$\mathrm{O}_1$の中心を$\mathrm{I}$,円$\mathrm{O}_2$の中心を$\mathrm{J}$とする.$\displaystyle \frac{r_2}{r_1}=2$となるとき,$\triangle \mathrm{OIJ}$の面積を求めよ.
山形大学 国立 山形大学 2016年 第3問
$\mathrm{AB}=6$,$\mathrm{BC}=3$,$\mathrm{CD}=x$,$\mathrm{DA}=5-x (0<x<5)$を満たす四角形$\mathrm{ABCD}$が円に内接している.四角形$\mathrm{ABCD}$の面積を$S(x)$とするとき,次の問いに答えよ.

(1)$\cos \angle \mathrm{BAD}+\cos \angle \mathrm{BCD}=0$を示せ.
(2)$\displaystyle \cos \angle \mathrm{BAD}=\frac{26-5x}{3(10-x)}$を示せ.
(3)$S(x)$を求めよ.
(4)$S(x)$の最大値を求めよ.また,そのときの$x$の値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2016年 第2問
$xy$平面上で原点$\mathrm{O}$を中心とする半径$r$の円周上の点$\mathrm{P}$について,以下の問いに答えよ.なお,点$\mathrm{A}$の座標を$(r,\ 0)$,$\angle \mathrm{AOP}$の値を$\theta$とする.
(図は省略)

(1)点$\mathrm{P}$の座標を求めよ.
(2)点$\mathrm{P}$を通り,この円に接する接線$\ell$の方程式を求めよ.
(3)接線$\ell$上の点$\mathrm{R}$と点$\mathrm{Q}(-r,\ 0)$を結んだ線分の長さが最小になるときの点$\mathrm{R}$の座標を求めよ.ただし,点$\mathrm{P}$は点$\mathrm{Q}$と異なるものとする.
(4)接線$\ell$に関して,点$\mathrm{Q}$と対称な点$\mathrm{S}$の座標を求めよ.ただし,点$\mathrm{P}$は点$\mathrm{Q}$と異なるものとする.
(5)$r=1$,$\displaystyle \theta=\frac{\pi}{3}$のとき,接線$\ell$に関して,直線$y=0$と対称な直線の方程式を求めよ.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。