タグ「規則」の検索結果

1ページ目:全54問中1問~10問を表示)
京都大学 国立 京都大学 2016年 第5問
$xy$平面上の$6$個の点$(0,\ 0)$,$(0,\ 1)$,$(1,\ 0)$,$(1,\ 1)$,$(2,\ 0)$,$(2,\ 1)$が図のように長さ$1$の線分で結ばれている.動点$\mathrm{X}$は,これらの点の上を次の規則に従って$1$秒ごとに移動する.


\mon[規則:] 動点$\mathrm{X}$は,そのときに位置する点から出る長さ$1$の線分によって結ばれる図の点のいずれかに,等しい確率で移動する.

例えば,$\mathrm{X}$が$(2,\ 0)$にいるときは,$(1,\ 0)$,$(2,\ 1)$のいずれかに$\displaystyle \frac{1}{2}$の確率で移動する.また$\mathrm{X}$が$(1,\ 1)$にいるときは,$(0,\ 1)$,$(1,\ 0)$,$(2,\ 1)$のいずれかに$\displaystyle \frac{1}{3}$の確率で移動する.

時刻$0$で動点$\mathrm{X}$が$\mathrm{O}=(0,\ 0)$から出発するとき,$n$秒後に$\mathrm{X}$の$x$座標が$0$である確率を求めよ.ただし$n$は$0$以上の整数とする.

(図は省略)
九州大学 国立 九州大学 2016年 第3問
座標平面上で円$x^2+y^2=1$に内接する正六角形で,点$\mathrm{P}_0(1,\ 0)$を$1$つの頂点とするものを考える.この正六角形の頂点を$\mathrm{P}_0$から反時計まわりに順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$とする.ある頂点に置かれている$1$枚のコインに対し,$1$つのサイコロを$1$回投げ,出た目に応じてコインを次の規則にしたがって頂点上を動かす.


\mon[(規則)$(ⅰ)$] $1$から$5$までの目が出た場合は,出た目の数だけコインを反時計まわりに動かす.例えば,コインが$\mathrm{P}_4$にあるときに$4$の目が出た場合は$\mathrm{P}_2$まで動かす.
(ii) $6$の目が出た場合は,$x$軸に関して対称な位置にコインを動かす.ただし,コインが$x$軸上にあるときは動かさない.例えば,コインが$\mathrm{P}_5$にあるときに$6$の目が出た場合は$\mathrm{P}_1$に動かす.

はじめにコインを$1$枚だけ$\mathrm{P}_0$に置き,$1$つのサイコロを続けて何回か投げて,$1$回投げるごとに上の規則にしたがってコインを動かしていくゲームを考える.以下の問いに答えよ.

(1)$2$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
(2)$3$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
(3)$n$を自然数とする.$n$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
小樽商科大学 国立 小樽商科大学 2016年 第3問
次の$[ ]$の中を適当に補え.

(1)$\displaystyle \frac{5561}{6059}$をこれ以上約分できない分数に直すと$[ ]$.
(2)次の漸化式で定められる数列$\{a_n\}$を考える.
\[ a_1=2,\quad a_{n+1}=(a_n+n)(a_n-n) \]
このとき,$\displaystyle \sum_{k=1}^5 a_k$を求めると$[ ]$.
(3)数直線上で,点$\mathrm{P}$の出発点を原点$\mathrm{O}$とし,サイコロを投げたとき,出た目に応じて,次の規則で点$\mathrm{P}$を動かすものとする.
\begin{itemize}
出た目が$1$または$2$のとき,点$\mathrm{P}$を正の方向へ$1$だけ動かす.
出た目が$3$または$4$のとき,点$\mathrm{P}$を負の方向へ$1$だけ動かす.
出た目が$5$または$6$のとき,点$\mathrm{P}$を原点$\mathrm{O}$に戻す.
\end{itemize}
サイコロを$3$回投げたとき,点$\mathrm{P}$が原点$\mathrm{O}$にいる確率は$[ ]$.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第4問
サイコロを何回か振って最後に出た目を得点とするゲームを行う.

(1)サイコロを$1$回だけ振ることができるときの得点の期待値$E_1$を求めよ.
(2)サイコロを$2$回まで振ることができるとき,$1$回目に$m$以上の目が出たらそこでやめ,$m$より小さい目が出たら$2$回目を振ることにする.このときの得点の期待値$E_2(m)$を$m$を用いて表し,$E_2(m)$が最大となる$m$を求めよ.
(3)$n$を$2$以上の自然数,$m_1,\ \cdots,\ m_{n-1}$を$6$以下の自然数とする.$n$回までサイコロを振ることができるとき,$i$回目に$m_{n-i}$以上の目が出たらそこでやめ,$m_{n-i}$より小さい目が出たら$i+1$回目を振るという規則でサイコロを振り続ける.ただし,$n$回サイコロを振ったらそこでやめる.このときの得点の期待値を$E_n(m_1,\ \cdots,\ m_{n-1})$とする.以下の問いに答えよ.

(i) $E_3(m_1,\ m_2)$を$E_2(m_1)$,$m_2$を用いて表し,$E_3(m_1,\ m_2)$が最大となる$m_1,\ m_2$とそのときの$E_3(m_1,\ m_2)$の値を求めよ.
(ii) $n \geqq 4$とする.$E_{n-1}(m_1,\ \cdots,\ m_{n-2})$の最大値を$e_{n-1}$とすると,$E_n(m_1,\ \cdots,\ m_{n-1})$が最大となるのは,$E_{n-1}(m_1,\ \cdots,\ m_{n-2})$が$e_{n-1}$となり,かつ$m_{n-1}$が$e_{n-1}$以上の最小の自然数となるときである.このことを示せ.

ただし,得点が$k$となる確率を$p(k)$としたとき,
\[ p(1)+2p(2)+3p(3)+4p(4)+5p(5)+6p(6) \]
を得点の期待値とよぶ.
島根大学 国立 島根大学 2016年 第1問
$n$を自然数とする.下図のように,$3$本の平行な道路$\ell_1$,$\ell_2$,$\ell_3$があり,$\ell_1,\ \ell_2$をつなぐ縦の道と,$\ell_2,\ \ell_3$をつなぐ縦の道がそれぞれ$n$本ずつ,交互に配置されているとする.
(図は省略)
次の規則に従い図の$\mathrm{X}$から出発して$\mathrm{P}_n$,$\mathrm{Q}_n$,$\mathrm{R}_n$に到達する経路の個数をそれぞれ$a_n$,$b_n$,$c_n$とする.


\mon[(規則)] $\ell_1$,$\ell_2$,$\ell_3$は一方通行であり,西方向には進むことができない.また,一度通った縦の道を再び通ることもできない.

次の問いに答えよ.

(1)$a_2,\ b_2$を求めよ.
(2)$a_{n+1}$を$a_n,\ b_n$を用いて表せ.
(3)$b_n=c_n$が成り立つことを証明せよ.
(4)$a_1,\ b_1,\ a_2,\ b_2,\ \cdots,\ a_k,\ b_k,\ \cdots$と順に並べてできる数列を$\{f_n\} (n=1,\ 2,\ 3,\ \cdots)$とする.$f_{n+2}$を$f_n$,$f_{n+1}$を用いて表せ.また,それを用いて$a_7$を求めよ.
福井大学 国立 福井大学 2016年 第4問
複素数$z$は,以下に述べる規則$(ⅰ),\ (ⅱ)$にしたがって,$1$秒ごとに値が変化していくものとする.ただし,$i$を虚数単位として,$\displaystyle \alpha=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$とおき,$n=0,\ 1,\ 2,\ \cdots$について,時刻$n$秒での$z$の値を$z_n$とおく.


(i) $z_0=1$とする.
(ii) $z$の値は,時刻$n+1$秒において,確率$\displaystyle \frac{1}{2}$で$z_{n+1}=\alpha z_n$に,確率$\displaystyle \frac{1}{2}$で$z_{n+1}=\alpha^{-1}z_n$に変化する.

$m=1,\ 2,\ 3,\ \cdots$について,$z_{2m}=\alpha^2$となる確率を$p_m$,$z_{2m}=1$となる確率を$q_m$とおくとき,以下の問いに答えよ.

(1)$z_{2m}=-1$となる確率を求めよ.
(2)$q_m$を,$p_m$を用いて表せ.
(3)$p_m$を求めよ.
(4)$z_n=1$となる確率を求めよ.
明治大学 私立 明治大学 2016年 第4問
以下のように群に分けられた規則的な数列がある.ただし,第$n$群には$n$個の項が入るものとする.つまり,第$1$項が第$1$群,第$2$項と第$3$項が第$2$群,その後に続く$3$つの項が第$3$群,などとなる.この数列について,各問に答えよ.


$\displaystyle \frac{2}{1 \cdot 2} \;\bigg|\; \frac{3}{1 \cdot 2}, \frac{3}{ 2 \cdot 3} \;\bigg|\; \frac{4}{1 \cdot 2}, \frac{4}{ 2 \cdot 3}, \frac{4}{3 \cdot 4} \;\bigg|\; \frac{5}{1 \cdot 2}, \frac{5}{ 2 \cdot 3}, \frac{5}{3 \cdot 4}, \frac{5}{4 \cdot 5} \;\bigg|\; \frac{6}{1 \cdot 2},\ \cdots$
第$1$群 \qquad\!\!\! 第$2$群 \qquad\qquad\quad\!\!\! 第$3$群 \qquad\qquad\qquad\qquad\ 第$4$群


(1)第$20$項の値を求めよ.
(2)第$5$項と同じ値の項は次に第何項に現れるか.
(3)初項から第$n$群の最後の項までの項の総数を式で表せ.
(4)第$n$群に含まれる$k$番目の項を式で表せ.
(5)初項から第$30$群の最後の項までの中に,$5$より大きい項はいくつあるか.
(6)第$n$群に含まれる$n$個の項の総和を式で表せ.
東京薬科大学 私立 東京薬科大学 2016年 第4問
$2$つの動点$\mathrm{A}$,$\mathrm{B}$は,一辺の長さが$1$の立方体の辺上を,毎秒$1$の速さで,次の規則にしたがって移動する.


\mon[$\lbrack$規則$1 \rbrack$] 最初は同じ頂点にあり,同時に移動を開始する.
\mon[$\lbrack$規則$2 \rbrack$] どの頂点からも,$1$秒で移動可能な$3$つの頂点のいずれかに確率$\displaystyle \frac{1}{3}$で移動する.

自然数$n$について,移動を開始してから$n$秒後における$2$点$\mathrm{A}$,$\mathrm{B}$間の距離が$\sqrt{2}$となる確率を$P_n$とする.以下の問に答えよ.


(1)$\displaystyle P_1=\frac{[ヘ]}{[ホ]},\ P_2=\frac{[マミ]}{[ムメ]}$である.

(2)$P_n$と$P_{n+1}$の関係は
\[ P_{n+1}=\frac{[モ]}{[ヤ]} P_n+\frac{[ユ]}{[ヨ]} \quad (n=1,\ 2,\ \cdots) \]
である.
(3)$\displaystyle P_n=\frac{[ラ]}{[リ]} \left( 1-\frac{[ル]}{{[レ]}^n} \right) (n=1,\ 2,\ \cdots)$である.
会津大学 公立 会津大学 2016年 第2問
袋の中に,赤玉,青玉,白玉,黒玉が$1$つずつ,全部で$4$つ入っている.この袋から玉を$1$つ取り出して,また袋に戻す試行を繰り返す.座標平面上を動く点$\mathrm{P}$がはじめ原点$\mathrm{O}$にあり,試行のたびに,次の規則に従って動くものとする.
\begin{itemize}
赤玉が出たとき,$\mathrm{P}$は$x$軸の正の向きに$2$だけ進む.
青玉が出たとき,$\mathrm{P}$は$x$軸の正の向きに$1$だけ進む.
白玉が出たとき,$\mathrm{P}$は$y$軸の正の向きに$2$だけ進む.
黒玉が出たとき,$\mathrm{P}$は$y$軸の正の向きに$1$だけ進む.
\end{itemize}
このとき,以下の問いに答えよ.

(1)試行を$3$回繰り返した結果,$\mathrm{P}$が点$(2,\ 1)$にある確率を求めよ.
(2)試行を$3$回繰り返した結果,$\mathrm{P}$が$y$軸上にある確率を求めよ.
(3)試行を$5$回繰り返した結果,$\mathrm{OP}=5$となる確率を求めよ.
(4)試行を$5$回繰り返した結果,$\mathrm{P}$が不等式$6 \leqq x+y \leqq 8$の表す領域にある確率を求めよ.
東京大学 国立 東京大学 2015年 第2問
どの目も出る確率が$\displaystyle \frac{1}{6}$のさいころを$1$つ用意し,次のように左から順に文字を書く.

さいころを投げ,出た目が$1,\ 2,\ 3$のときは文字列$\mathrm{AA}$を書き,$4$のときは文字$\mathrm{B}$を,$5$のときは文字$\mathrm{C}$を,$6$のときは文字$\mathrm{D}$を書く.さらに繰り返しさいころを投げ,同じ規則に従って,$\mathrm{AA}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$をすでにある文字列の右側につなげて書いていく.
たとえば,さいころを$5$回投げ,その出た目が順に$2,\ 5,\ 6,\ 3,\ 4$であったとすると,得られる文字列は,
\[ \mathrm{A} \ \mathrm{A} \ \mathrm{C} \ \mathrm{D} \ \mathrm{A} \ \mathrm{A} \ \mathrm{B} \]
となる.このとき,左から$4$番目の文字は$\mathrm{D}$,$5$番目の文字は$\mathrm{A}$である.

(1)$n$を正の整数とする.$n$回さいころを投げ,文字列を作るとき,文字列の左から$n$番目の文字が$\mathrm{A}$となる確率を求めよ.
(2)$n$を$2$以上の整数とする.$n$回さいころを投げ,文字列を作るとき,文字列の左から$n-1$番目の文字が$\mathrm{A}$で,かつ$n$番目の文字が$\mathrm{B}$となる確率を求めよ.
スポンサーリンク

「規則」とは・・・

 まだこのタグの説明は執筆されていません。