タグ「自然数」の検索結果

11ページ目:全1172問中101問~110問を表示)
早稲田大学 私立 早稲田大学 2016年 第3問
座標平面上の動点$\mathrm{P}_t(x,\ y)$の座標が,$t$の関数
\[ x=e^{-t} \cos t,\quad y=e^{-t} \sin t \]
で与えられている.また$\mathrm{O}$を原点とする.実数$a,\ b$で$0<b-a<2\pi$であるものに対して,線分$\mathrm{OP}_a$と,動点$\mathrm{P}_t$が$t=a$から$t=b$まで動くときに描く曲線と,線分$\mathrm{OP}_b$とによって囲まれる部分の面積を$S(a,\ b)$とおく.次の問に答えよ.

(1)$f(t)=S(0,\ t)$とする.導関数$\displaystyle \frac{d}{dt}f(t)$を求めよ.
(2)自然数$n$に対して,$\displaystyle U(n)=S \left( \frac{n-1}{2} \pi,\ \frac{n}{2} \pi \right)$とおく.$U(n)$を求めよ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty U(n)$の和を求めよ.
早稲田大学 私立 早稲田大学 2016年 第4問
$3$点$(0,\ 0)$,$(1,\ 0)$,$(0,\ 1)$を頂点とする三角形を$\mathrm{D}$とする.$\mathrm{D}$の$1$辺を選び,その中点を中心として$\mathrm{D}$を${180}^\circ$回転させる.このようにして$\mathrm{D}$から得られる$3$個の三角形からなる集合を$S_1$とする.$S_1$から一つ三角形を選び,さらにその三角形の$1$辺を選び,その中点を中心としてその三角形を${180}^\circ$回転させる.このようにして$S_1$から得られる三角形すべてからなる集合を$S_2$とする.$S_2$は$7$個の三角形からなる集合であり,その中には$\mathrm{D}$も含まれる.一般に,自然数$n$に対して$S_n$まで定義されたとき,$S_n$から一つ三角形を選び,さらにその三角形の$1$辺を選び,その中点を中心としてその三角形を${180}^\circ$回転させる.このようにして$S_n$から得られる三角形すべてからなる集合を$S_{n+1}$とする.次の問に答えよ.

(1)$S_3$の要素を全て図示せよ.
(2)$m$を自然数とする.$S_{2m}$から一つ三角形を選び,その頂点それぞれと原点$(0,\ 0)$との距離の最大値を考える.三角形の選び方をすべて考えたときの,この最大値の最大値$d_{2m}$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

三角形$\mathrm{ABC}$の頂点上に置かれた点$\mathrm{P}$に対する次の操作$\mathrm{T}$を考える.
\begin{waku}[操作$\mathrm{T}$]


\mon[$(\mathrm{T}1)$] 点$\mathrm{P}$が頂点$\mathrm{A}$上に置かれているときは,確率$\displaystyle \frac{1}{2}$でそのままにしておき,確率$\displaystyle \frac{1}{2}$で頂点$\mathrm{B}$上に移す.
\mon[$(\mathrm{T}2)$] 点$\mathrm{P}$が頂点$\mathrm{B}$上に置かれているときは,確率$\displaystyle \frac{1}{2}$でそのままにしておき,確率$\displaystyle \frac{1}{2}$で頂点$\mathrm{C}$上に移す.
\mon[$(\mathrm{T}3)$] 点$\mathrm{P}$が頂点$\mathrm{C}$上に置かれているときは,必ず頂点$\mathrm{A}$上に移す.

\end{waku}

以下$n,\ m$を自然数とし,点$\mathrm{P}$を頂点$\mathrm{A}$上に置いて,操作$\mathrm{T}$を繰り返し行う.操作$\mathrm{T}$を$n$回繰り返し終えたとき,点$\mathrm{P}$が頂点$\mathrm{A}$上に置かれている確率を$a_n$,頂点$\mathrm{B}$上に置かれている確率を$b_n$,頂点$\mathrm{C}$上に置かれている確率を$c_n$とする.

(1)$n \geqq 2$のとき$a_n,\ b_n,\ c_n$を$a_{n-1},\ b_{n-1},\ c_{n-1}$で表すと
\[ \left\{ \begin{array}{l}
a_n=[あ]a_{n-1}+[い]c_{n-1} \phantom{\frac{[ ]}{[ ]}} \\
b_n=[う]a_{n-1}+[え]b_{n-1} \phantom{\frac{1}{1}} \\
c_n=[お]b_{n-1}+[か]c_{n-1} \phantom{\frac{[ ]}{[ ]}} \\
\end{array} \right. \]
である.
(2)$(1)$より$a_n,\ b_n$を求めると,$a_{2m-1}=[き]$,$b_{2m-1}=[く]$であり,$a_{2m}=[け]$,$b_{2m}=[こ]$である.
(3)操作$\mathrm{T}$を$n$回繰り返し終えたとき初めて点$\mathrm{P}$が頂点$\mathrm{C}$上に置かれる確率を$d_n$とすると,$d_n=[さ]$である.
(4)操作$\mathrm{T}$を$n$回繰り返し終えたとき点$\mathrm{P}$が頂点$\mathrm{A}$または$\mathrm{B}$の上に置かれ,かつそれまでに$1$回だけ頂点$\mathrm{C}$上に置かれていた確率を$e_n$とすると,$e_n=[し]$である.
学習院大学 私立 学習院大学 2016年 第1問
次の問いに答えよ.

(1)$n$を自然数とするとき,和
\[ \sum_{k=2n}^{3n} (3k^2+5k-1) \]
を$n$の整式として表せ.ただし,答えは$n$について降べきの順に整理すること.
(2)${12}^{40}$は何桁の数であるか答えよ.ただし,整数は$10$進法で表すものとし,$\log_{10}2=0.301$,$\log_{10}3=0.477$とする.
愛知工業大学 私立 愛知工業大学 2016年 第2問
$n$を自然数とする.$xy$平面において,$2$つの放物線$y=nx^2$,$x=(n+1)y^2$で囲まれた部分の面積を$S_n$とする.

(1)$S_n$を求めよ.
(2)無限級数$S_1+S_2+\cdots +S_n+\cdots$の和を求めよ.
愛知工業大学 私立 愛知工業大学 2016年 第1問
次の$[ ]$を適当に補え.$(6)$,$(7)$は選択問題である.

(1)$a$を定数とする.不等式$x^2-(4a+1)x+4a^2+2a<0$をみたす$x$の範囲は$[ア]$である.また,不等式$x^2-(4a+1)x+4a^2+2a<0$をみたす整数$x$が$x=2$だけであるような$a$の範囲は$[イ]$である.
(2)数列$\{a_n\}$は関係式
\[ a_1=3,\quad a_{n+1}-a_n=2(3^n-n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたすとする.このとき,$a_4=[ウ]$であり,$a_n=[エ]$である.
(3)$\displaystyle \log_2(4-x)+\log_4(x-1)=\frac{1}{2}$をみたす$x$は$x=[オ]$である.
(4)$a$を定数とし,$f(x)=x^3-3x^2-9x+a$とする.区間$-2 \leqq x \leqq 0$における$f(x)$の最小値が$5$であるとき,$a=[カ]$である.またこのとき,区間$-2 \leqq x \leqq 0$における$f(x)$の最大値は$[キ]$である.
(5)$\displaystyle z=\frac{1+i}{\sqrt{3}+i}$とする.$z^n$が実数となる最小の自然数$n$は$n=[ク]$であり,このとき,$z^n=[ケ]$である.ただし,$i$は虚数単位である.
(6)$1$枚の硬貨を投げ,表が出たときは白球$1$個を壺に入れ,裏が出たときは黒球$1$個を壺に入れる.硬貨を$3$回投げて壺に$3$個の球が入っている.

(i) 壺に白球$1$個と黒球$2$個が入っている確率は$[コ]$である.
(ii) 壺の中から$2$個の球を同時に取り出したとき,それが白球$1$個と黒球$1$個である確率は$[サ]$である.

(7)等式$\displaystyle \frac{1}{x}+\frac{5}{y}=1$をみたす自然数$x,\ y$の組は$(x,\ y)=[シ]$である.
津田塾大学 私立 津田塾大学 2016年 第2問
$a,\ b,\ c$を自然数とする.

(1)$ab,\ a+b$がともに偶数ならば,$a,\ b$はともに偶数であることを示せ.
(2)$abc,\ ab+bc+ca,\ a+b+c$がすべて$3$の倍数ならば,$a,\ b,\ c$はすべて$3$の倍数であることを示せ.
津田塾大学 私立 津田塾大学 2016年 第3問
$m$を自然数とし,整数$x,\ y$は$x^3+y^3=m$を満たすとする.

(1)$0<x^2-xy+y^2 \leqq m$が成り立つことを示せ.

(2)$\displaystyle y^2 \leqq \frac{4}{3}m$が成り立つことを示せ.

(3)$x^3+y^3=19$を満たす整数の組$(x,\ y)$をすべて求めよ.ただし,$(2)$の結果を利用してもよい.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[シ]$に当てはまる数または式を記入せよ.

(1)$2$つの自然数$m,\ n$で等式$m^2-n^2=15$を満たすのは,
\[ (m,\ n)=([ア],\ [イ]) \quad \text{と} \quad (m,\ n)=([ウ],\ [エ]) \]
である.
(2)方程式$x^3-(3+a)x^2+(2+3a)x-2a=0$の異なる実数解が$2$個であるときの実数$a$の値をすべて挙げると$[オ]$である.
(3)$0 \leqq \theta \leqq \pi$の範囲で$4 \cos \theta-\sin \theta=1$が成り立つとき,$\tan \theta$の値は$[カ]$である.
(4)実数$x$に関する不等式$2^{2x}-2^{x+1}-48<0$を解くと$x<[キ]$である.
(5)$\sqrt{3},\ \sqrt[3]{5},\ \sqrt[4]{7},\ \sqrt[6]{19}$のうち,最小のものは$[ク]$である.
(6)大中小の$3$個のさいころを同時に$1$回投げるとき,出た目の和が$7$になる場合の数は$[ケ]$通りある.
(7)食品$\mathrm{X}$,$\mathrm{Y}$がある.食品$\mathrm{X}$は$100 \, \mathrm{g}$あたり$80$円で,栄養素$\mathrm{a}$を$4 \, \mathrm{mg}$,栄養素$\mathrm{b}$を$20 \, \mathrm{mg}$含む.食品$\mathrm{Y}$は$100 \, \mathrm{g}$あたり$60$円で,栄養素$\mathrm{a}$を$2 \, \mathrm{mg}$,栄養素$\mathrm{b}$を$60 \, \mathrm{mg}$含む.栄養素$\mathrm{a}$を$8 \, \mathrm{mg}$以上,栄養素$\mathrm{b}$を$80 \, \mathrm{mg}$以上になるように食品$\mathrm{X}$,$\mathrm{Y}$を混合するとき,費用を最小にするには食品$\mathrm{X}$を$[コ] \, \mathrm{g}$と食品$\mathrm{Y}$を$[サ] \, \mathrm{g}$混ぜればよい.

(8)$\displaystyle S=\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\cdots +\frac{1}{6 \cdot 7 \cdot 8}$とするとき,$S$の値は$[シ]$である.
京都薬科大学 私立 京都薬科大学 2016年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.ただし,$[コ]$においては,$[コ]$につづくかっこ内の選択肢から適切なものを$\mathrm{A}$か$\mathrm{B}$の記号で答えよ.

(1)$2$つの円$x^2+y^2=1$,$(x-2)^2+y^2=R^2 (R>0)$が異なる$2$つの交点を持つのは$[ア]<R<[イ]$が成立するときである.このとき,$\mathrm{O}(0,\ 0)$,$\mathrm{A}(2,\ 0)$とおき,交点の$1$つを$\mathrm{P}$とすると
\[ \cos \angle \mathrm{OPA}=[ウ] \]
が成立するので,$\angle \mathrm{OPA}={90}^\circ$となるのは$R=[エ]$のときである.
(2)$x$の$2$次方程式$x^2-4x \sin \theta+4+\sqrt{2}-(2+2 \sqrt{2}) \cos \theta=0 (0 \leqq \theta<2\pi)$が異なる$2$つの実数解を持つような$\theta$の範囲は,$[オ]<\theta<[カ]$および$[キ]<\theta<[ク]$である.
(3)$p$と$q$を正の整数とするとき,$x$の$2$次方程式$x^2-2 \sqrt{p}x+q=0$は異なる$2$つの実数解を持つとする.これらの解を$\alpha$と$\beta$で表すとき,$r=|\alpha-\beta|$と$p,\ q$の間には,関係式$r^2=[ケ]$が成り立つ.したがって,もし$r$が整数ならば,$r$は$[コ]$($\mathrm{A}:$偶数,$\mathrm{B}:$奇数)である.このとき,$2$次方程式の解を$q$と$r$を用いてあらわすと$x=[サ] \pm [シ]$となる.
(4)$1$つのサイコロを$2$回続けて投げるとき,$1$回目に出る目を$a$,$2$回目に出る目を$b$とし,$x$の$2$次方程式$x^2-ax+b=0 \ \cdots\ ①$を考える.$2$次方程式$①$が実数解を持たない確率は$[ス]$である.$2$次方程式$①$が実数解を持つとき,それが重解である条件付き確率は$[セ]$である.$2$次方程式$①$の解が$2$つとも自然数になる確率は$[ソ]$である.
(5)$3^{10}={10}^x$となる$x$は$[タ]$である.よって,$3^{10}$は$[チ]$桁の$10$進数である.同様の考え方で$5^{10}$を$9$進数で表すと,$[ツ]$桁である.ただし,$\log_{10}3=0.4771$,$\log_{10}5=0.6990$とする.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。